0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[\text{Coordinate System: } +x \text{ (East), } +y \text{ (North)}\] | Define the coordinate system with East as the positive \(x\) direction and North as the positive \(y\) direction. |
2 | \[F_{1x} = 170 \;\text{N}, \quad F_{1y} = 0 \;\text{N}\] | Student 1 pulls Eastward with \(170\,\text{N}\); hence, all force is in the \(x\) direction. |
3 | \[F_{2x} = 0 \;\text{N}, \quad F_{2y} = -100 \;\text{N}\] | Student 2 pulls Southward with \(100\,\text{N}\); therefore, the \(y\) component is negative. |
4 | \[F_{3x} = -200\sin(20^\circ), \quad F_{3y} = 200\cos(20^\circ)\] | Student 3 pulls with \(200\,\text{N}\) at \(20^\circ\) west of north. The \(y\) component is \(200\cos(20^\circ)\) (northward) and the \(x\) component is \(-200\sin(20^\circ)\) (westward). |
5 | \[F_{\text{net},x} = 170 – 200\sin(20^\circ)\] | Sum the \(x\) components: Student 1 contributes \(170\,\text{N}\) east, and Student 3 contributes \(-200\sin(20^\circ)\,\text{N}\) (west). |
6 | \[F_{\text{net},y} = -100 + 200\cos(20^\circ)\] | Sum the \(y\) components: Student 2 gives \(-100\,\text{N}\) (south) and Student 3 gives \(200\cos(20^\circ)\,\text{N}\) (north). |
7 | \(200\sin(20^\circ) \approx 68.4 \;\text{N}, \quad 200\cos(20^\circ) \approx 187.9 \;\text{N}\) | Calculate the approximate numerical values of the components for Student 3. |
8 | \[F_{\text{net},x} \approx 170 – 68.4 = 101.6 \;\text{N}\] | Compute the net \(x\) component using the approximated value. |
9 | \[F_{\text{net},y} \approx -100 + 187.9 = 87.9 \;\text{N}\] | Compute the net \(y\) component using the approximated value. |
10 | \[F_{\text{net}} = \sqrt{(101.6)^2 + (87.9)^2} \approx 134.4 \;\text{N}\] | Find the magnitude of the net force using the Pythagorean theorem. |
11 | \[\theta = \tan^{-1}\left(\frac{87.9}{101.6}\right) \approx 40.9^\circ\]\] | Determine the direction of the net force measured as the angle north of east. |
12 | \[\boxed{134.4 \;\text{N},\; 40.9^\circ \; \text{north of east}}\] | State the final net force magnitude and its direction. |
Just ask: "Help me solve this problem."
Friction provides the force needed for a car to travel around a flat, circular race track. Answer the following:
Two objects are attracted to each other by a gravitational force \( F \). If each mass is tripled, so that each becomes \( 3 \) times its original value, and the distance between the objects is cut in half to \( \dfrac{1}{2} \) of its original separation, what is the new gravitational force between the objects in terms of \( F \)?
The coefficient of static friction between hard rubber and normal street pavement is about \(0.85\). On how steep a hill (maximum angle) can you leave a car parked?
A westward–moving car is changing its speed. The net force on the car ____.
The exoplanet HD 69830b has a mass 10 times that of the Earth and a radius 5 times that of the Earth. The value of g on HD 69830b is most nearly
\(\boxed{134.4\,\text{N}\text{ at }40.9^\circ\text{ north of east}}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?