0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\text{Real forces on the car: }\{\vec{W},\vec{N}\}\] | Because the road is slick and friction is negligible, there is no friction force. The only real forces are the car’s weight \(\vec{W}=M\vec{g}\) (downward) and the normal force \(\vec{N}\) (perpendicular to the road surface). |
| 2 | \[\vec{W}=Mg\,\text{(straight down)}\] | Weight always acts vertically downward with magnitude \(Mg\). |
| 3 | \[\vec{N}\perp\text{banked surface},\quad \angle(\vec{N},\text{vertical})=\theta\] | The normal force is perpendicular to the road. Since the road is banked at angle \(\theta\) above horizontal, the normal tilts by \(\theta\) from the vertical (toward the center of the circular path). |
| 4 | \[\text{Choose axes: }\hat{x}\text{ horizontal toward center (radial inward)},\;\hat{y}\text{ vertical upward}\] | This coordinate system matches the physics: centripetal acceleration is purely horizontal inward (radial), and there is no vertical acceleration because the car stays on the surface (constant height while going around). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\sum F_y = Ma_y = 0\] | There is no vertical acceleration for steady circular motion on the bank (the car does not accelerate upward or downward). |
| 2 | \[N\cos\theta – Mg = 0\] | Resolve \(\vec{N}\) into components using axes from part (a): vertical component is \(N\cos\theta\) upward, weight is \(Mg\) downward. |
| 3 | \[N\cos\theta = Mg\] | From \(\sum F_y=0\), the upward and downward forces balance. |
| 4 | \[\sum F_x = Ma_x = M\frac{v^2}{R}\] | Horizontal inward (radial) acceleration is centripetal with magnitude \(v^2/R\). |
| 5 | \[N\sin\theta = M\frac{v^2}{R}\] | The only horizontal inward force is the inward component of the normal force, \(N\sin\theta\). |
| 6 | \[\frac{N\sin\theta}{N\cos\theta} = \frac{M\frac{v^2}{R}}{Mg}\] | Divide the horizontal equation by the vertical equation to eliminate \(N\) and \(M\). |
| 7 | \[\tan\theta = \frac{v^2}{Rg}\] | Simplify: \(\sin\theta/\cos\theta=\tan\theta\) and \(\left(Mv^2/R\right)/(Mg)=v^2/(Rg)\). |
| 8 | \[v^2 = Rg\tan\theta\] | Solve algebraically for \(v^2\). |
| 9 | \[\boxed{v = \sqrt{Rg\tan\theta}}\] | This is the required speed for a frictionless banked curve; mass \(M\) cancels, so the speed does not depend on \(M\). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[v = \sqrt{Rg\tan\theta}\] | Use the result from part (b). |
| 2 | \[v = \sqrt{(30.0\,\text{m})(9.80\,\text{m/s}^2)\tan(20.0^\circ)}\] | Substitute \(R=30.0\,\text{m}\), \(g=9.80\,\text{m/s}^2\), \(\theta=20.0^\circ\). (\(M\) is not needed because it cancels.) |
| 3 | \[v = \sqrt{(294\,\text{m}^2/\text{s}^2)\tan(20.0^\circ)}\] | Compute \((30.0)(9.80)=294\). |
| 4 | \[v \approx \sqrt{(294)(0.364)}\] | Use \(\tan(20.0^\circ)\approx 0.364\). |
| 5 | \[v \approx \sqrt{107}\] | Compute \((294)(0.364)\approx 107\). |
| 6 | \[\boxed{v \approx 10.3\,\text{m/s}}\] | Take the square root: \(\sqrt{107}\approx 10.3\), giving the car’s speed on the banked, frictionless curve. |
Just ask: "Help me solve this problem."
The International Space Station has a mass of \(4.2 \times 10^{5} \, \text{kg}\) and orbits Earth at a distance of \(4.0 \times 10^{2} \, \text{km}\) above the surface. Earth has a radius of \(6.37 \times 10^{6} \, \text{m}\) and a mass of \(5.97 \times 10^{24} \, \text{kg}\). Calculate the following:
A ball of mass \( m \) is fastened to a string. The ball swings at constant speed in a vertical circle of radius \( R \) with the other end of the string held fixed. Neglecting air resistance, what is the difference between the string’s tension at the bottom of the circle and at the top of the circle?
Riders in a carnival ride stand with their backs against the wall of a circular room of diameter \(8.0 \, \text{m}\). The room is spinning horizontally about an axis through its center at a rate of \(45 \, \text{rev/min}\) when the floor drops so that it no longer provides any support for the riders. What is the minimum coefficient of static friction between the wall and the rider required so that the rider does not slide down the wall?
A \(2,000 \, \text{kg}\) car collides with a stationary \(1,000 \, \text{kg}\) car. Afterwards, they slide \(6 \, \text{m}\) before coming to a stop. The coefficient of friction between the tires and the road is \(0.7\). Find the initial velocity of the \(2,000 \, \text{kg}\) car before the collision?
What is the weight of a person who has a mass of \(75 \, \text{kg}\)?
\(v = \sqrt{Rg\tan\theta}\)
\(10.3\,\text{m/s}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?