AP Physics

Unit 3 - Circular Motion

Intermediate

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part (a) Free-body diagram (forces + axes)

Step Derivation/Formula Reasoning
1 \[\text{Real forces on the car: }\{\vec{W},\vec{N}\}\] Because the road is slick and friction is negligible, there is no friction force. The only real forces are the car’s weight \(\vec{W}=M\vec{g}\) (downward) and the normal force \(\vec{N}\) (perpendicular to the road surface).
2 \[\vec{W}=Mg\,\text{(straight down)}\] Weight always acts vertically downward with magnitude \(Mg\).
3 \[\vec{N}\perp\text{banked surface},\quad \angle(\vec{N},\text{vertical})=\theta\] The normal force is perpendicular to the road. Since the road is banked at angle \(\theta\) above horizontal, the normal tilts by \(\theta\) from the vertical (toward the center of the circular path).
4 \[\text{Choose axes: }\hat{x}\text{ horizontal toward center (radial inward)},\;\hat{y}\text{ vertical upward}\] This coordinate system matches the physics: centripetal acceleration is purely horizontal inward (radial), and there is no vertical acceleration because the car stays on the surface (constant height while going around).

Part (b) Speed on a frictionless banked curve

Step Derivation/Formula Reasoning
1 \[\sum F_y = Ma_y = 0\] There is no vertical acceleration for steady circular motion on the bank (the car does not accelerate upward or downward).
2 \[N\cos\theta – Mg = 0\] Resolve \(\vec{N}\) into components using axes from part (a): vertical component is \(N\cos\theta\) upward, weight is \(Mg\) downward.
3 \[N\cos\theta = Mg\] From \(\sum F_y=0\), the upward and downward forces balance.
4 \[\sum F_x = Ma_x = M\frac{v^2}{R}\] Horizontal inward (radial) acceleration is centripetal with magnitude \(v^2/R\).
5 \[N\sin\theta = M\frac{v^2}{R}\] The only horizontal inward force is the inward component of the normal force, \(N\sin\theta\).
6 \[\frac{N\sin\theta}{N\cos\theta} = \frac{M\frac{v^2}{R}}{Mg}\] Divide the horizontal equation by the vertical equation to eliminate \(N\) and \(M\).
7 \[\tan\theta = \frac{v^2}{Rg}\] Simplify: \(\sin\theta/\cos\theta=\tan\theta\) and \(\left(Mv^2/R\right)/(Mg)=v^2/(Rg)\).
8 \[v^2 = Rg\tan\theta\] Solve algebraically for \(v^2\).
9 \[\boxed{v = \sqrt{Rg\tan\theta}}\] This is the required speed for a frictionless banked curve; mass \(M\) cancels, so the speed does not depend on \(M\).

Part (c) Numerical speed for given values

Step Derivation/Formula Reasoning
1 \[v = \sqrt{Rg\tan\theta}\] Use the result from part (b).
2 \[v = \sqrt{(30.0\,\text{m})(9.80\,\text{m/s}^2)\tan(20.0^\circ)}\] Substitute \(R=30.0\,\text{m}\), \(g=9.80\,\text{m/s}^2\), \(\theta=20.0^\circ\). (\(M\) is not needed because it cancels.)
3 \[v = \sqrt{(294\,\text{m}^2/\text{s}^2)\tan(20.0^\circ)}\] Compute \((30.0)(9.80)=294\).
4 \[v \approx \sqrt{(294)(0.364)}\] Use \(\tan(20.0^\circ)\approx 0.364\).
5 \[v \approx \sqrt{107}\] Compute \((294)(0.364)\approx 107\).
6 \[\boxed{v \approx 10.3\,\text{m/s}}\] Take the square root: \(\sqrt{107}\approx 10.3\), giving the car’s speed on the banked, frictionless curve.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

\(v = \sqrt{Rg\tan\theta}\)

\(10.3\,\text{m/s}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Feeling uneasy about your next physics test? We help boost grades in 3 lesson or less.

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.