0 attempts
0% avg
UBQ Credits
Part A
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ Q = \pi r^2 v \] | This is the expression for the volume rate of flow, where \(r\) is the nozzle radius and \(v\) is the exit velocity. |
| 2 | \[ Q = \pi (0.015)^2 (6.0) \] | Substitute the given values \(r = 0.015\,\text{m}\) and \(v = 6.0\,\text{m/s}\) into the equation. |
| 3 | \[ Q \approx \pi \times 0.000225 \times 6.0 \approx \pi \times 0.00135 \approx 0.00424\,\text{m}^3/\text{s} \] | Perform the multiplication and use an approximation for \(\pi\) to calculate \(Q\). |
| 4 | \[ \boxed{Q \approx 0.00424\,\text{m}^3/\text{s}} \] | This is the final numerical value for the volume rate of flow. |
Part B
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ A_{\text{pipe}} = \pi r_{\text{pipe}}^2 = \pi (0.025)^2 \] | Calculate the cross-sectional area of the pipe having radius \(0.025\,\text{m}\). |
| 2 | \[ A_{\text{pipe}} \approx \pi \times 0.000625 \approx 0.00196\,\text{m}^2 \] | Multiply to find the numerical area. |
| 3 | \[ v_{\text{pipe}} = \frac{Q}{A_{\text{pipe}}} = \frac{0.00424}{0.00196} \approx 2.16\,\text{m/s} \] | Determine the velocity of water in the pipe using the constant flow rate \(Q\) from part (a). |
| 4 | \[ P_{\text{pipe}} = P_{\text{atm}} + \frac{1}{2}\rho\left(v_{\text{exit}}^2 – v_{\text{pipe}}^2\right) + \rho g (2.5) \] | Apply Bernoulli’s equation between the fountain exit (where \(P_{\text{exit}} = P_{\text{atm}}\) and \(v_{\text{exit}} = 6.0\,\text{m/s}\)) at \(z=0\) and the pipe point, which is \(2.5\,\text{m}\) below. |
| 5 | \[ \frac{1}{2}\rho(v_{\text{exit}}^2 – v_{\text{pipe}}^2) = \frac{1}{2}(1000)(36 – 4.67) \approx 500 \times 31.33 \approx 15665\,\text{Pa} \] | Compute the kinetic term using \(\rho = 1000\,\text{kg/m}^3\), \(v_{\text{exit}}^2 = 36\), and \(v_{\text{pipe}}^2 \approx 4.67\). |
| 6 | \[ \rho g (2.5) = 1000 \times 9.81 \times 2.5 \approx 24525\,\text{Pa} \] | Calculate the gravitational pressure increase due to the \(2.5\,\text{m}\) height difference. |
| 7 | \[ P_{\text{pipe}} \approx 101325 + 15665 + 24525 \approx 141515\,\text{Pa} \] | Sum up the atmospheric pressure with the kinetic and gravitational contributions. |
| 8 | \[ \boxed{P_{\text{pipe}} \approx 1.42 \times 10^5\,\text{Pa}} \] | This is the final calculated absolute pressure in the pipe. |
Part C
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[ v_{\text{new}} = \sqrt{2 g h} \] | To reach a maximum height \(h\), the required exit speed is given by equating kinetic energy to gravitational potential energy. |
| 2 | \[ v_{\text{new}} = \sqrt{2 \times 9.81 \times 4.0} \approx \sqrt{78.48} \approx 8.86\,\text{m/s} \] | Substitute \(g = 9.81\,\text{m/s}^2\) and \(h = 4.0\,\text{m}\) to compute the new exit velocity. |
| 3 | \[ A_{\text{new}} = \frac{Q}{v_{\text{new}}} = \frac{0.00424}{8.86} \approx 0.000478\,\text{m}^2 \] | With the flow rate constant, the new nozzle area is determined by dividing \(Q\) by the new exit velocity. |
| 4 | \[ r_{\text{new}} = \sqrt{\frac{A_{\text{new}}}{\pi}} = \sqrt{\frac{0.000478}{\pi}} \approx 0.0123\,\text{m} \] | Calculate the new nozzle radius from the area using the area formula of a circle. |
| 5 | \[ \boxed{r_{\text{new}} \approx 0.0123\,\text{m}} \] | This is the required radius of the nozzle to launch the water to \(4.0\,\text{m}\) while maintaining the same flow rate. |
Just ask: "Help me solve this problem."
A diver descends from a salvage ship to the ocean floor at a depth of \(35 \text{ m}\) below the surface. The density of ocean water is \(1.025 \times 10^3 \text{ kg/m}^3\).
Nancy is using a turkey baster (a kitchen tool with a rubber bulb on one end and a tube on the other) to collect juices from a roasting turkey. When she squeezes and then releases the rubber bulb, it creates suction with a pressure of \( 99{,}800 \) \( \text{Pa} \). This suction causes the turkey juice to rise \( 9 \) \( \text{cm} \) up the tube. Based on this information, what is the density of the turkey juice?
Why do you float higher in salt water than in fresh water?
Rex, an auto mechanic, is raising a \( 1200 \) \( \text{kg} \) car on his hydraulic lift so that he can work underneath. If the area of the input piston is \( 12.0 \) \( \text{cm}^2 \), while the output piston has an area of \( 700 \) \( \text{cm}^2 \), what force must be exerted on the input piston to lift the car?
A solid titanium sphere of radius \( 0.35 \) \( \text{m} \) has a density \( 4500 \) \( \text{kg/m}^3 \). It is held suspended completely underwater by a cable. What is the tension in the cable?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?