0 attempts
0% avg
UBQ Credits
Part A:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ W_{\text{total}} = W_{\text{beaker}} + W_{\text{water}} + W_{\text{ball}} \] | Calculate the total weight of the apparatus by summing the weights of the beaker, water, and ball. |
2 | \[ W_{\text{water}} = \rho \cdot V \cdot g \] | Calculate the weight of the water using its density (\( \rho = 1000 \, \text{kg/m}^3 \)), volume \( V = 5.0 \times 10^{-3} \, \text{m}^3 \), and gravitational acceleration \( g = 9.8 \, \text{m/s}^2 \). |
3 | \[ W_{\text{water}} = 1000 \cdot 5.0 \times 10^{-3} \cdot 9.8 = 49 \, \text{N} \] | Compute the weight of the water. |
4 | \[ W_{\text{total}} = 2.0 + 49 + 3.0 = 54 \, \text{N} \] | Sum up all weights to find total weight of the apparatus. |
5 | \[ \boxed{54 \, \text{N}} \] | The weight of the entire apparatus. |
Part B:
Part C:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ F_B = W + T \] | The buoyant force can be calculated by summing the weight and tension forces acting on the ball since these are the forces balancing the buoyancy. |
2 | \[ F_B = 3.0 + 4.0 = 7.0 \, \text{N} \] | Calculate the buoyant force on the ball. |
3 | \[ \boxed{7.0 \, \text{N}} \] | The buoyant force on the ball. |
Part D:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ P_{\text{bottom}} = \rho \cdot g \cdot h \] | The gauge pressure at the bottom of a liquid column is given by the product of the density, gravitational acceleration, and height of the liquid column. |
2 | \[ P_{\text{bottom}} = 1000 \cdot 9.8 \cdot 0.20 = 1960 \, \text{Pa} \] | Calculate the pressure at the bottom of the beaker. |
3 | \[ \boxed{1960 \, \text{Pa}} \] | The gauge pressure at the bottom of the beaker. |
Part E: When the ball is held fully submerged, it displaces water equal to its entire volume. Once it floats, it only displaces water equal to its weight—which is less than its full volume because the ball is less dense than water. Put differently – since the ball is less dense than water, its weight is less than what it would be if it were made of water occupying the same volume. Thus, \(V_{\text{displaced}}\) (when floating) is less than \(V_{\text{ball}}\).
Just ask: "Help me solve this problem."
A drinking fountain projects water at an initial angle of \( 50^ \circ \) above the horizontal, and the water reaches a maximum height of \( 0.150 \) \( \text{m} \) above the point of exit. Assume air resistance is negligible.
Three identical reservoirs, \(A\), \(B\), and \(C\), are represented above, each with a small pipe where water exits horizontally. The pipes are set at the same height above a pool of water. The water in the reservoirs is kept at the levels shown. Which of the following correctly ranks the horizontal distances \( d \) that the streams of water travel before hitting the surface of the pool?
In the lab, a student is given a glass beaker filled with water with an ice cube of mass \( m \) and volume \( V_c \) floating in it.
The downward force of gravity on the ice cube has magnitude \( F_g \). The student pushes down on the ice cube with a force of magnitude \( F_P \) so that the cube is totally submerged. The water then exerts an upward buoyant force on the ice cube of magnitude \( F_B \). Which of the following is an expression for the magnitude of the acceleration of the ice cube when it is released?
The figure shows a horizontal pipe with sections with different cross-sectional areas. Small tubes extend from the top of each section. The cross-sectional area of the pipe at location C is half that at A, and the areas at A and D are the same. Water flows in the pipe from left to right. Which of the following correctly ranks the height \( h \) of the water in the tubes above the labeled locations?
The figure shows a container filled with water to a depth \( d \). The container has a hole a distance \( y \) above its bottom, allowing water to exit with an initially horizontal velocity. Which of the following correctly predicts and explains how the speed of the water as it exits the hole would change if the distance \( y \) above the bottom of the container increased?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.