0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[W_{\text{water}} = \rho g V = (1000\, \text{kg/m}^3)(9.8\, \text{m/s}^2)(5.0\times10^{-3}\, \text{m}^3)=4.9\times10^{1}\, \text{N}\] | Use \( W = \rho g V \) to convert the given water volume into its weight. |
| 2 | \[W_{\text{total}} = 2.0\, \text{N} + 4.9\times10^{1}\, \text{N} + 3.0\, \text{N}=\boxed{5.4\times10^{1}\, \text{N}}\] | Add weights of the beaker, water, and ball. Tension is internal, so it does not affect total weight. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\text{Forces:}\; W=3.0\,\text{N (down)},\; T=4.0\,\text{N (down)},\; B\,\text{(up)}\] | Identify all forces acting on the ball: its weight \(W\), the downward tension \(T\), and the upward buoyant force \(B\). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[B = W + T = 3.0\, \text{N} + 4.0\, \text{N} = \boxed{7.0\, \text{N}}\] | The ball is in static equilibrium, so upward buoyant force equals the sum of downward forces. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[P = \rho g h = (1000\, \text{kg/m}^3)(9.8\, \text{m/s}^2)(0.20\, \text{m}) = \boxed{2.0\times10^{3}\, \text{Pa}}\] | Use hydrostatic relation \(P = \rho g h\) at the given depth \(h=0.20\,\text{m}\). |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\text{Initial displaced weight} = B = 7.0\,\text{N} > W_{\text{ball}} = 3.0\,\text{N}\] | While submerged, the ball displaces water whose weight equals the buoyant force (7 N). |
| 2 | \[\text{Floating displacement} = W_{\text{ball}} = 3.0\,\text{N}\] | Once free, a floating object displaces only its own weight in fluid. |
| 3 | \[\boxed{\text{Water level lower}}\] | The displaced volume (and thus water level) decreases from that producing 7 N to that producing 3 N, so the level drops. |
Just ask: "Help me solve this problem."

Water flows from point \( A \) to points \( D \) and \( E \) as shown. Some of the flow parameters are known, as shown in the table. Determine the unknown parameters. Note the diagram above does not show the relative diameters of each section of the pipe.
| Section | Diameter | Flow Rate | Velocity |
|---|---|---|---|
| \( \text{AB} \) | \( 300 \) \( \text{mm} \) | \(\textbf{?}\) | \(\textbf{?}\) |
| \( \text{BC} \) | \( 600 \) \( \text{mm} \) | \(\textbf{?}\) | \( 1.2 \) \( \text{m/s} \) |
| \( \text{CD} \) | \(\textbf{?}\) | \( Q_{CD} = 2Q_{CE} \) \( \text{m}^3/\text{s} \) | \( 1.4 \) \( \text{m/s} \) |
| \( \text{CE} \) | \( 150 \) \( \text{mm} \) | \( Q_{CE} = 0.5Q_{CD} \) \( \text{m}^3/\text{s} \) | \(\textbf{?}\) |
A trash compactor pushes down with a force of \( 500 \) \( \text{N} \) on a \( 3 \) \( \text{cm}^2 \) input piston, causing a force of \( 30,000 \) \( \text{N} \) to crush the trash. What is the area of the output piston that crushes the trash?
A geologist suspects that her rock specimen is hollow, so she weighs the specimen in both air and water. When completely submerged, the rock weighs twice as much in air as it does in water.
A \(2\)-N force is used to push a small piston \(10\) \(\text{cm}\) downward in a simple hydraulic machine. If the opposite large piston rises by \(0.5\) \(\text{cm}\), what is the maximum weight the large piston can lift?
In a carbonated drink dispenser, bubbles flow through a horizontal tube that gradually narrows in diameter. Assuming the change in height is negligible, which of the following best describes how the bubbles behave as they move from the wider section of the tube to the narrower section?
\(5.4\times10^{1}\,\text{N}\)
\(W\,\text{down},\;T\,\text{down},\;B\,\text{up}\)
\(7.0\,\text{N}\)
\(2.0\times10^{3}\,\text{Pa}\)
\(\text{lower}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?