AP Physics

Unit 8 - Fluids

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part A – Minimum work required

Step Derivation/Formula Reasoning
1 \[\Delta x = 35\,\text{m} + 50\,\text{m} = 85\,\text{m}\] The water is pumped from the bottom of the well (35 m deep) to a house 50 m above the well; hence the total vertical displacement is \(85\,\text{m}\).
2 \[W = \rho\,V\,g\,\Delta x\] This formula gives the gravitational work (or potential energy gain) required to move a volume \(V\) of water with density \(\rho\) against gravity \(g\) through a vertical displacement \(\Delta x\).
3 \[W = (1000\,\text{kg/m}^3)(0.35\,\text{m}^3)(9.8\,\text{m/s}^2)(85\,\text{m})\] Substitute the numerical values: water density \(\rho = 1000\,\text{kg/m}^3\), volume \(V = 0.35\,\text{m}^3\), gravitational acceleration \(g = 9.8\,\text{m/s}^2\), and displacement \(\Delta x = 85\,\text{m}\).
4 \[W \approx 2.92 \times 10^5\,\text{J}\] Performing the multiplication gives \(W \approx 291550\,\text{J}\), which is rounded to \(2.92 \times 10^5\,\text{J}\).
5 \[\boxed{W \approx 2.92 \times 10^5\,\text{J}}\] This is the minimum work required to pump the water used per day.

Part B – Minimum power rating

Step Derivation/Formula Reasoning
1 \[t = 2\,\text{hours} = 7200\,\text{s}\] Convert the pumping time from hours to seconds for consistency in SI units.
2 \[P = \frac{W}{t}\] Power is defined as the work done per unit time.
3 \[P = \frac{2.92 \times 10^5\,\text{J}}{7200\,\text{s}} \approx 40.5\,\text{W}\] Substitute the work calculated in part (a) and the conversion for time to find the minimum power rating of the pump.
4 \[\boxed{P \approx 40.5\,\text{W}}\] This represents the minimum power needed to pump the water within the specified time.

Part C – Flow velocity

Step Derivation/Formula Reasoning
1 \[A_{\text{well}} = \frac{\pi (0.03)^2}{4}\] Calculate the cross-sectional area of the pipe in the well (pipe diameter = 3.0 cm = 0.03 m).
2 \[Q = A_{\text{well}}\,v_i\] The volumetric flow rate \(Q\) in the well is the product of the area and the well velocity \(v_i = 0.50\,\text{m/s}\).
3 \[A_{\text{house}} = \frac{\pi (0.0125)^2}{4}\] Calculate the cross-sectional area of the pipe at the house (pipe diameter = 1.25 cm = 0.0125 m).
4 \[A_{\text{well}}\,v_i = A_{\text{house}}\,v_x \quad \Rightarrow \quad v_x = \frac{A_{\text{well}}}{A_{\text{house}}}\,v_i\] Using mass continuity (volume flow rate is constant), relate the velocity in the well \(v_i\) to the velocity in the house \(v_x\) via their cross-sectional areas.
5 \[\frac{A_{\text{well}}}{A_{\text{house}}} = \left(\frac{0.03}{0.0125}\right)^2 = (2.4)^2 = 5.76\] Since both areas involve the factor \(\pi/4\), the ratio simplifies to the square of the ratio of the diameters.
6 \[v_x = 5.76 \times 0.50 = 2.88\,\text{m/s}\] Multiply the well velocity by the area ratio to obtain the flow velocity at the house’s faucet.
7 \[\boxed{v_x \approx 2.88\,\text{m/s}}\] This is the calculated flow velocity when the faucet in the house is open.

Part D – Calculating minimum pressure

Step Derivation/Formula Reasoning
1 \[\text{Energy per unit volume: } \Delta P = \rho g\,\Delta x + \frac{1}{2}\rho\,(v_x^2 – v_i^2)\] This expression (derived from Bernoulli’s principle) represents the pressure energy per unit volume needed to overcome both the gravitational potential \(\rho g\,\Delta x\) and to provide the increase in kinetic energy from \(v_i\) (in the well) to \(v_x\) (at the faucet).
2 \[P_{\text{faucet, min}} = \rho g\,\Delta x + \frac{1}{2}\rho\,v_x^2\] For minimum pressure at the faucet (assuming negligible initial kinetic energy \(v_i \approx 0\) or that its contribution is already included in the pump pressure), the faucet must supply at least the hydrostatic pressure plus the dynamic pressure necessary for the flow velocity \(v_x\). In practice, if the faucet discharges to the atmosphere, its gauge pressure is 0, so the pump must overcome this total pressure drop.
3 \[\boxed{P_{\text{min at faucet}} = \rho g\,\Delta x + \frac{1}{2}\rho\,v_x^2}\] This is how one would calculate the minimum pressure required at the faucet: by summing the pressure needed to lift the water \(\rho g\,\Delta x\) and the pressure needed to accelerate it to \(v_x\) (i.e., \(\frac{1}{2}\rho\,v_x^2\)).
4 N/A In summary, to find the minimum pressure at the faucet, you equate the pressure energy per unit volume provided by the pump with the sum of the gravitational and dynamic energy per unit volume required for the water to reach the faucet at velocity \(v_x\). This is essentially an algebraic application of Bernoulli’s principle under ideal (lossless) conditions.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(\boxed{W \approx 2.92 \times 10^5\,\text{J}}\)
  2. \(\boxed{P \approx 40.5\,\text{W}}\)
  3. \(\boxed{v_x \approx 2.88\,\text{m/s}}\)
  4. The minimum pressure at the faucet is calculated by equating the pressure energy per unit volume to the sum of the gravitational potential energy \(\rho g\,\Delta x\) and the dynamic pressure \(\frac{1}{2}\rho\,v_x^2\), i.e., \(P_{\text{min}} = \rho g\,\Delta x + \frac{1}{2}\rho\,v_x^2\). In short: apply Bernoulli’s principle.

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.