0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| Part (a): Total Time to Reach 80 m | ||
| 1 | \[ t_{a} = \frac{v_x-0}{0.10} = \frac{2.0}{0.10} = 20\;\text{s} \] | Calculate the time required to reach a speed of \(2.0\;\text{m/s}\) from rest with a constant acceleration \(0.10\;\text{m/s}^2\). |
| 2 | \[ \Delta x_{a} = \frac{1}{2}(0.10)(20)^2 = 20\;\text{m} \] | Determine the displacement during the acceleration phase using the uniform acceleration equation. |
| 3 | \[ \Delta x_{c} = 80\;\text{m} – 20\;\text{m} = 60\;\text{m} \] | Find the remaining distance after the acceleration phase for which the rig travels at constant speed. |
| 4 | \[ t_{c} = \frac{60\;\text{m}}{2.0\;\text{m/s}} = 30\;\text{s} \] | Compute the time taken during the constant speed phase using \(\Delta x=t\,v_x\). |
| 5 | \[ T = t_{a} + t_{c} = 20\;\text{s} + 30\;\text{s} = 50\;\text{s} \] | Sum the two time intervals to get the total time to 80 m depth. |
| 6 | \[ \boxed{50\;\text{s}} \] | This is the total descent time to reach the maximum depth. |
| Part (b): Weight of the Water on the Top of the Bell | ||
| 1 | \[ \Delta P = \rho g h = 1025\;\text{kg/m}^3 \times 9.8\;\text{m/s}^2 \times 80\;\text{m} \] | Compute the hydrostatic pressure due to an 80 m water column (excluding the 1 atm inside the bell). |
| 2 | \[ \Delta P \approx 1025 \times 9.8 \times 80 \approx 803600\;\text{Pa} \] | Evaluate the product to obtain the pressure increase from the water column. |
| 3 | \[ F = \Delta P \times A = 803600\;\text{Pa} \times 9.0\;\text{m}^2 \] | Calculate the force (i.e. the weight of the water) on the bell’s top using its cross-sectional area. |
| 4 | \[ F \approx 7.2324 \times 10^6\;\text{N} \] | Multiply to get the force in newtons. |
| 5 | \[ \boxed{7.23 \times 10^6\;\text{N}} \] | This is the weight of the water exerted on the top of the bell at 80 m depth. |
| Part (c): Absolute Pressure on the Top of the Bell | ||
| 1 | \[ P_{\text{abs}} = P_{\text{atm}} + \rho g h \] | Add the atmospheric pressure at the surface to the hydrostatic pressure due to the 80 m water column. |
| 2 | \[ P_{\text{abs}} = 101325\;\text{Pa} + 803600\;\text{Pa} \] | Use \(101325\;\text{Pa}\) for 1 atm and the hydrostatic pressure found earlier. |
| 3 | \[ P_{\text{abs}} \approx 904925\;\text{Pa} \] | Sum the pressures to get the absolute pressure at depth. |
| 4 | \[ \boxed{9.05 \times 10^5\;\text{Pa}} \] | This is the absolute pressure on the top of the bell at 80 m depth. |
| Part (d): Minimum Force to Lift the Hatch | ||
| 1 | \[ A_{h} = \pi r^2 = \pi (0.25)^2 = \pi (0.0625) \approx 0.19635\;\text{m}^2 \] | Determine the area of the circular hatch with radius \(r = 0.25\;\text{m}\). |
| 2 | \[ F_{h} = \Delta P \times A_{h} = 803600\;\text{Pa} \times 0.19635\;\text{m}^2 \] | Calculate the net force acting on the hatch due to the pressure difference (\(\Delta P\)) computed earlier. |
| 3 | \[ F_{h} \approx 157800\;\text{N} \] | Multiply to find the minimum force necessary to overcome the water pressure on the hatch. |
| 4 | \[ \boxed{1.58 \times 10^5\;\text{N}} \] | This is the minimum force required to start lifting the hatch at the maximum depth. |
| Part (e): Reducing the Force to Open the Hatch | ||
| 1 | N/A | The force to open the hatch is given by the pressure difference multiplied by its area. To reduce this force, the net pressure difference must be decreased. |
| 2 | N/A | One effective method is to equalize the pressure on both sides of the hatch by increasing the internal pressure of the bell (for example, via a pressure equalization valve or controlled venting) so that it approaches the external hydrostatic pressure. |
| 3 | N/A | This reduces the differential pressure \(\Delta P\) acting on the hatch, thereby lowering the force required to open it. |
| 4 | N/A | Alternatively, decreasing the hatch area would also reduce the force, but modifying the pressure is generally more practical. |
| 5 | Answer: | To reduce the force, increase the bell’s internal pressure to nearly match the external pressure (or use a pressure equalization system), which minimizes the net pressure difference on the hatch. |
Just ask: "Help me solve this problem."

Alcohol has a specific gravity of \( 0.79 \). If a barometer consisting of an open-ended tube placed in a dish of alcohol is used at sea level, to what height in the tube will the alcohol rise?
Diamond has a density of \( 3500 \) \( \text{kg/m}^3 \). During a physics lab, a diamond drops out of Virginia’s necklace and falls into her graduated cylinder filled with \( 5.00 \times 10^{-5} \) \( \text{m}^3 \) of water. This causes the water level to rise to the \( 5.05 \times 10^{-5} \) \( \text{m}^3 \) mark. What is the mass of Virginia’s diamond?
A sample of an unknown material appears to weigh \( 285 \) \( \text{N} \) in air and \( 195 \) \( \text{N} \) when immersed in alcohol of specific gravity \( 0.700 \).
Nancy is using a turkey baster (a kitchen tool with a rubber bulb on one end and a tube on the other) to collect juices from a roasting turkey. When she squeezes and then releases the rubber bulb, it creates suction with a pressure of \( 99{,}800 \) \( \text{Pa} \). This suction causes the turkey juice to rise \( 9 \) \( \text{cm} \) up the tube. Based on this information, what is the density of the turkey juice?

Water flows from point \( A \) to points \( D \) and \( E \) as shown. Some of the flow parameters are known, as shown in the table. Determine the unknown parameters. Note the diagram above does not show the relative diameters of each section of the pipe.
| Section | Diameter | Flow Rate | Velocity |
|---|---|---|---|
| \( \text{AB} \) | \( 300 \) \( \text{mm} \) | \(\textbf{?}\) | \(\textbf{?}\) |
| \( \text{BC} \) | \( 600 \) \( \text{mm} \) | \(\textbf{?}\) | \( 1.2 \) \( \text{m/s} \) |
| \( \text{CD} \) | \(\textbf{?}\) | \( Q_{CD} = 2Q_{CE} \) \( \text{m}^3/\text{s} \) | \( 1.4 \) \( \text{m/s} \) |
| \( \text{CE} \) | \( 150 \) \( \text{mm} \) | \( Q_{CE} = 0.5Q_{CD} \) \( \text{m}^3/\text{s} \) | \(\textbf{?}\) |
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?