0 attempts
0% avg
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] h = 220 \, \text{m} [/katex] | The height from which the plane is dropping the crate. |
| 2 | [katex] v_x = 150 \, \text{m/s} [/katex] | The horizontal velocity of the plane. |
| 3 | [katex] g = 9.81 \, \text{m/s}^2 [/katex] | The acceleration due to gravity. |
| 4 | [katex] t = \sqrt{\frac{2h}{g}} [/katex] | Time of flight for the crate to fall from height [katex] h [/katex] under gravity [katex] g [/katex] |
| 5 | [katex] t = \sqrt{\frac{2 \times 220}{9.81}} \approx 6.69 \, \text{s} [/katex] | Substitute [katex] h [/katex] and [katex] g [/katex] into the time of flight formula to calculate the time it takes for the crate to reach the ground. |
| 6 | [katex] d = v_x \times t [/katex] | The horizontal distance is calculated by multiplying the horizontal velocity by the time of flight. |
| 7 | [katex] d = 150 \, \text{m/s} \times 6.69 \, \text{s} \approx 1003.5 \, \text{m} [/katex] | Substitute [katex] v_x [/katex] and [katex] t [/katex] into the distance formula to find the horizontal distance where the crate should be dropped. |
| 8 | The horizontal distance must be around 1005 meters | Comparing the calculated distance with the options given, the closest answer is 1005 m (option (d)). |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
An airplane with a speed of \( 97.5 \, \text{m/s} \) is climbing upward at an angle of \( 50.0^\circ \) with respect to the horizontal. When the plane’s altitude is \( 732 \, \text{m} \), the pilot releases a package.
A projectile is launched at angle \( \theta \) to the horizontal, with velocity \( v \), maximum vertical displacement \( s \), and angle \( \theta \) between \( 0^{\circ} \) and \( 45^{\circ} \). What will the maximum vertical displacement be if the projectile is now launched at an angle of \( 2 \theta \) from the horizontal with velocity \( v \)?
A block of mass \(M_1\) travels horizontally with a constant speed \(v_0\) on a plateau of height \(H\) until it comes to a cliff. A toboggan of mass \(M_2\) is positioned on level ground below the cliff. The center of the toboggan is a distance \(D\) from the base of the cliff.
A golfer hits a shot to a green that is elevated \(2.80 \, \text{m}\) above the point where the ball is struck. The ball leaves the club at a speed of \(18.9 \, \text{m/s}\) at an angle of \(52.0^\circ\) above the horizontal. It rises to its maximum height and then falls down to the green. Ignoring air resistance, find the speed of the ball just before it lands.
Two balls are launched at the same time from opposite sides of a \( 100 \) \( \text{m} \) wide and \(1000 ~\text{m}\) canyon. Ball A is launched at \( 20 \) \( \text{m/s} \) at \( 45^{\circ} \) from the left side. Ball B is launched at \( 20 \) \( \text{m/s} \) at \( 45^{\circ} \) from the right side.
A projectile is launched at \( 25 \) \( \text{m/s} \) at an angle of \( 45^\circ \). It lands on a slope \( 5 \) \( \text{m} \) below the launch height. On landing, it rebounds vertically with \( 80\% \) of its speed and falls straight down from there. Find the total time from launch to final impact at the base of the slope.
A cat chases a mouse across a \(1.0 \, \text{m}\) high table. The mouse steps out of the way, and the cat slides off the table and strikes the floor \(2.2 \, \text{m}\) from the edge of the table. When the cat slid off the table, what was its speed?
A gun can fire a bullet to height \( h \) when fired straight up. If the same gun is pointed at an angle of \( 45^\circ \) from the vertical, what is the new maximum height of the projectile?
A ball is shot from the top of a building with an initial velocity of \( 18 \) \( \text{m/s} \) at an angle \( \theta = 42^\circ \) above the horizontal.
Two balls are launched at the same speed. Ball A is launched at an angle of \( 45^{\circ} \) and Ball B is launched at an angle of \( 60^{\circ} \). Which one reaches a higher point?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?