0 attempts
0% avg
UBQ Credits
| Step | Formula Derivation | Reasoning |
|---|---|---|
| 1 | [katex]m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2[/katex] | Conservation of momentum |
| 2 | [katex]4,kg \cdot 10,m/s + 7,kg \cdot 0,m/s = 4,kg \cdot v_{1x} + 7,kg \cdot 2,m/s \cdot \cos(22^\circ)[/katex] | Plugging in given values and decomposing the 7 kg mass’s velocity into horizontal component. |
| 3 | [katex]40 = 4v_{1x} + 13.08[/katex] | Calculating the horizontal momentum contribution from the 7 kg mass post-collision. |
| 4 | [katex]4v_{1x} = 26.92[/katex] | Solve for the 4 kg mass’s horizontal velocity component. |
| 5 | [katex]v_{1x} = 6.73,m/s[/katex] | Calculating the horizontal velocity of the 4 kg mass. |
| 6 | [katex]m_1 u_{1y} + m_2 u_{2y} = m_1 v_{1y} + m_2 v_{2y}[/katex] | Conservation of momentum in the vertical direction. Since the initial vertical momentum is 0, the final combined vertical momentum must also be 0. |
| 7 | [katex]0 = 4,kg \cdot v_{1y} + 7,kg \cdot 2,m/s \cdot \sin(22^\circ)[/katex] | Recognizing that initial vertical velocities are 0 and calculating the vertical component for the 7 kg mass. |
| 8 | [katex]v_{1y} = -1.04,m/s[/katex] | Calculating the vertical velocity of the 4 kg mass (negative indicates opposite direction to the 7 kg mass’s vertical component). |
| 9 | [katex]v_1 = \sqrt{v_{1x}^2 + v_{1y}^2}[/katex] and [katex]\theta = \arctan\left(\frac{v_{1y}}{v_{1x}}\right)[/katex] | Combining horizontal and vertical components to find magnitude and direction of the 4 kg mass’s velocity. |
| 10 | [katex]v_1 \approx \sqrt{6.73^2 + (-1.04)^2}[/katex] | Plugging in horizontal and vertical components. |
| 11 | [katex]v_1 \approx 6.81,m/s[/katex] | Calculating the magnitude of velocity. |
| 12 | [katex]\theta \approx \arctan\left(\frac{-1.04}{6.73}\right)[/katex] | Calculating the direction of the velocity. |
| 13 | [katex]\theta \approx -8.8^\circ[/katex] | Determining the angle below the horizontal for the 4 kg mass’s velocity. |
Just ask: "Help me solve this problem."
Two ice skaters suddenly push off against one another starting from a stationary position. The 45 kg skater acquires a speed of 0.375 m/s relative to the ice. What speed does the 60 kg skater acquire relative to the ice?
A \(15 \, \text{g}\) marble moves to the right at \(3.5 \, \text{m/s}\) and makes an elastic head-on collision with a \(22 \, \text{g}\) marble. The final velocity of the \(22 \, \text{g}\) marble is \(2.0 \, \text{m/s}\) to the right, and the final velocity of the \(15 \, \text{g}\) marble is \(5.4 \, \text{m/s}\) to the left. What was the initial velocity of the \(22 \, \text{g}\) marble?
An object at rest suddenly explodes into two fragments (\(m_1\) and \(m_2\)) by an explosion. Fragment \(m_1\) acquires \(3\) times the kinetic energy of the other. What is the ratio of \(m_1\) to \(m_2\)?
A 3800 kg open railroad car coasts along with a constant speed of 8.60 m/s along a level track. Snow begins to fall vertically and fills the car at rate of 3.50 kg/min. Ignoring friction with the tracks, what is the speed of the car after 90 min?
A \(0.10 \, \text{kg}\) ball, traveling horizontally at \(25 \, \text{m/s}\), strikes a wall and rebounds at \(19 \, \text{m/s}\). What is the magnitude of the change in the momentum of the ball during the rebound?
6.81 m/s at 8.8° above the horizontal
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?