New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

AP Physics

Unit 5 - Linear Momentum

Advanced

Mathematical

GQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 \[\sum \vec p_i=\sum \vec p_f\] Conservation of momentum (always valid for the two-body system during the collision, assuming negligible external impulse).
2 For the \(7\,\text{kg}\) mass after collision (angle \(22^\circ\) below \(+x\)):
\[v_{2x}=2\cos 22^\circ,\qquad v_{2y}=-2\sin 22^\circ\]
Decompose the given velocity into components. “Below the horizontal” means the \(y\)-component is negative.
3 Momentum in \(x\):
\[m_1u_{1x}+m_2u_{2x}=m_1v_{1x}+m_2v_{2x}\]
\[4(10)+7(0)=4v_{1x}+7\bigl(2\cos 22^\circ\bigr)\]
Apply conservation of momentum in the horizontal direction.
4 \[
40=4v_{1x}+14\cos 22^\circ
\]
\[
14\cos 22^\circ \approx 12.98
\]
Compute the \(x\)-momentum contribution of the \(7\,\text{kg}\) mass using the correct trig value.
5 \[
4v_{1x}=40-12.98=27.02
\]
\[
v_{1x}=\frac{27.02}{4}\approx 6.755\ \text{m/s}
\]
Solve for the \(4\,\text{kg}\) mass’s horizontal component.
6 Momentum in \(y\):
\[m_1u_{1y}+m_2u_{2y}=m_1v_{1y}+m_2v_{2y}\]
\[0=4v_{1y}+7\bigl(-2\sin 22^\circ\bigr)\]
Initial vertical momentum is zero. Since the \(7\,\text{kg}\) mass goes downward (negative \(y\)), the \(4\,\text{kg}\) mass must have positive \(v_{1y}\) to keep total \(y\)-momentum zero.
7 \[
0=4v_{1y}-14\sin 22^\circ
\]
\[
14\sin 22^\circ \approx 5.244
\]
Compute the vertical momentum magnitude associated with the \(7\,\text{kg}\) mass (downward).
8 \[
4v_{1y}=5.244
\]
\[
v_{1y}=\frac{5.244}{4}\approx 1.311\ \text{m/s}
\]
Solve for the \(4\,\text{kg}\) mass’s vertical component (positive = upward).
9 Speed and direction of the \(4\,\text{kg}\) mass:
\[
v_1=\sqrt{v_{1x}^2+v_{1y}^2},\qquad
\theta=\arctan\!\left(\frac{v_{1y}}{v_{1x}}\right)
\]
Combine components to get the velocity magnitude and the angle relative to the \(+x\) axis.
10 \[
v_1=\sqrt{(6.755)^2+(1.311)^2}
=\sqrt{45.63+1.72}
=\sqrt{47.35}\approx 6.88\ \text{m/s}
\]
Compute the magnitude using the corrected components.
11 \[
\theta=\arctan\!\left(\frac{1.311}{6.755}\right)\approx 11.0^\circ
\]
The \(4\,\text{kg}\) mass travels about \(11^\circ\) above the horizontal (since \(v_{1y}>0\)).
12 Elastic-collision check (kinetic energy must also be conserved):
\[
K_i=\tfrac12(4)(10^2)=200\ \text{J}
\]
\[
K_f=\tfrac12(4)v_1^2+\tfrac12(7)(2^2)
=2(47.35)+14\approx 108.7\ \text{J}
\]
An elastic collision requires \(K_i=K_f\). Using the given \(2\,\text{m/s}\) for the \(7\,\text{kg}\) mass gives \(K_f\neq K_i\), so the stated data are not consistent with an elastic collision (they describe a non-elastic outcome if momentum is conserved).
13 \[
\boxed{\vec v_1 \approx (6.755\,\hat i+1.311\,\hat j)\ \text{m/s}}
\]
\[
\boxed{v_1\approx 6.88\ \text{m/s at }11.0^\circ\text{ above horizontal}}
\]
Final velocity of the \(4\,\text{kg}\) mass from momentum conservation with the given \(7\,\text{kg}\) motion; note this contradicts the “elastic” requirement because kinetic energy is not conserved.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

6.81 m/s at 8.8° above the horizontal

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.