 # A 0.025 kg golf ball moving at 18.0 m/s crashes through the window of a house in 5.0 × 10-4 s. After the crash, the ball continues in the same direction with a speed of 10.0 m/s. Assuming the force exerted on the ball by the window was constant, what was the magnitude of this force? What impulse was delivered to the ball?

400 Newtons of Force and .2 kg · m/s of Impulse

## Written By Prof Phy AI

1. Finding the Force Exerted on the Ball

Step Formula Derivation Reasoning
1 F = \frac{\Delta p}{\Delta t} Force (F) is the change in momentum (\Delta p) over time (\Delta t).
2 \Delta p = m(v_f – v_i) Change in momentum, where m is mass, v_f is final velocity, and v_i is initial velocity.
3 \Delta t = 5.0 \times 10^{-4}, \text{s} Time duration of the crash.
4 F = \frac{0.025, \text{kg} \times (10.0, \text{m/s} – 18.0, \text{m/s})}{5.0 \times 10^{-4}, \text{s}} Substituting values to calculate the force.

2. Finding the Impulse Delivered to the Ball

Step Formula Derivation Reasoning
1 J = \Delta p Impulse (J) is the change in momentum.
2 J = m(v_f – v_i) Substituting the formula for change in momentum.

Let’s calculate the magnitude of the force and the impulse.

• Magnitude of Force: \boxed{-400, \text{N}} (The negative sign indicates direction opposite to the ball’s initial motion)
• Impulse Delivered to the Ball: \boxed{-0.2, \text{Ns}} (Again, the negative sign indicates a change in momentum opposite to the initial direction)

## Discover how students preformed on this question | Coming Soon

###### Login to Join the Discussion

400 Newtons of Force and .2 kg · m/s of Impulse ## Suggest an Edit

##### Nerd-Notes.com
KinematicsForces
\Delta x = v_i \cdot t + \frac{1}{2} a \cdot t^2F = m \cdot a
v = v_i + a \cdot tF_g = \frac{G \cdot m_1 \cdot m_2}{r^2}
a = \frac{\Delta v}{\Delta t}f = \mu \cdot N
R = \frac{v_i^2 \cdot \sin(2\theta)}{g}
Circular MotionEnergy
F_c = \frac{m \cdot v^2}{r}KE = \frac{1}{2} m \cdot v^2
a_c = \frac{v^2}{r}PE = m \cdot g \cdot h
KE_i + PE_i = KE_f + PE_f
MomentumTorque and Rotations
p = m \cdot v\tau = r \cdot F \cdot \sin(\theta)
J = \Delta pI = \sum m \cdot r^2
p_i = p_fL = I \cdot \omega
Simple Harmonic Motion
F = -k \cdot x
T = 2\pi \sqrt{\frac{l}{g}}
T = 2\pi \sqrt{\frac{m}{k}}
ConstantDescription
gAcceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface
GUniversal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2
\mu_k and \mu_sCoefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion.
kSpring constant, in \text{N/m}
VariableSI Unit
s (Displacement)\text{meters (m)}
v (Velocity)\text{meters per second (m/s)}
a (Acceleration)\text{meters per second squared (m/s}^2\text{)}
t (Time)\text{seconds (s)}
m (Mass)\text{kilograms (kg)}
VariableDerived SI Unit
F (Force)\text{newtons (N)}
E, PE, KE (Energy, Potential Energy, Kinetic Energy)\text{joules (J)}
P (Power)\text{watts (W)}
p (Momentum)\text{kilogram meters per second (kg·m/s)}
\tau (Torque)\text{newton meters (N·m)}
I (Moment of Inertia)\text{kilogram meter squared (kg·m}^2\text{)}
f (Frequency)\text{hertz (Hz)}

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters.

1. Start with the given measurement: \text{5 km}

2. Use the conversion factors for kilometers to meters and meters to millimeters: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}

3. Perform the multiplication: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}

4. Simplify to get the final answer: \boxed{5 \times 10^6 \, \text{mm}}

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

10^{-12}

Nano-

n

10^{-9}

Micro-

µ

10^{-6}

Milli-

m

10^{-3}

Centi-

c

10^{-2}

Deci-

d

10^{-1}

(Base unit)

10^{0}

Deca- or Deka-

da

10^{1}

Hecto-

h

10^{2}

Kilo-

k

10^{3}

Mega-

M

10^{6}

Giga-

G

10^{9}

Tera-

T

10^{12}

1. Some answers may be slightly off by 1% depending on rounding, etc.
2. Answers will use different values of gravity. Some answers use 9.81 m/s2, and other 10 m/s2 for calculations.
3. Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
4. Bookmark questions that you can’t solve so you can come back to them later.
5. Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!