0 attempts
0% avg
UBQ Credits
Part (a) – Finding the orbital speed.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] r = \frac{50}{2} = 25 \text{km} = 25000 \text{m} [/katex] | The radius [katex] r [/katex] of the orbit is half the diameter. Convert it to meters. |
2 | [katex] T = 11 \times 86400 [/katex] s | Convert period [katex] T [/katex] from days to seconds. There are 86400 seconds in a day. |
3 | [katex] v = \frac{2\pi r}{T} [/katex] | The orbital speed [katex] v [/katex] is calculated by dividing the circumference of the orbit by the orbital period. |
4 | [katex] v = \frac{2\pi \times 25000}{950400} [/katex] m/s | Substitute the values of [katex] r [/katex] and [katex] T [/katex] into the formula. Convert [katex] r [/katex] from km to m by multiplying by 1000. |
5 | [katex] v \approx 0.165 [/katex] m/s | Simplifying the expression gives the orbital speed [katex] v [/katex]. |
6 | [katex] \boxed{v \approx 0.165 \text{m/s}} [/katex] | This is the final value for the satellite’s orbital speed. |
Part (b) – Finding the comet’s mass.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] v^2 = \frac{GM}{r} [/katex] | The inwards gravitational force is equal to the centripetal force of the orbiting comet. In terms of Newtons law this can be expressed as [katex]\frac{GMm}{r^2} = \frac{mv^2}{r} [/katex], where [katex] M [/katex] is the mass of the comet, [katex] m [/katex] [katex] is the mass of the satellite, and G [/katex] is the gravitational constant. |
2 | [katex] M = \frac{rv^2}{G} [/katex] | Rearrange the formula to solve for the mass [katex] M [/katex] of the comet. |
3 | [katex] M = \frac{25000 \times (0.165)^2}{6.674 \times 10^{-11}} [/katex] kg | Substitute the values of [katex] r [/katex] and [katex] v [/katex] into the formula, remembering that [katex] r [/katex] is already converted to meters. |
4 | [katex] M \approx 1.02 \times 10^{13} [/katex] kg | Calculating the value gives the mass of the comet. |
5 | [katex] \boxed{M \approx 1.02 \times 10^{13} \text{kg}} [/katex] | This is the final value for the mass of the comet. |
Part (c) – Finding the landing speed.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] h = 25\,\text{km}\, -\,1.8 \, \text{km} = 23.2 \, \text{km} = 23200 \, \text{meters} [/katex] | The distance from the satellite to the center of the comet is 25km. Since the comet has an average diameter of 3.6 km (or a radius of 1.8 km). The distance from the satellite to the surface of comet is 23.2 km. Convert this to meters. |
2 | [katex] t = 7 \times 3600 [/katex] s | Convert the fall time [katex] t [/katex] from hours to seconds. |
3 | [katex] g = \frac{GM}{r^2} [/katex] | Calculate the acceleration [katex] g [/katex] due to the comet’s gravity using the values from the previous two parts. Set [katex] mg = \frac{GMm}{r^2} [/katex] and solve for [katex] g [/katex]. |
4 | [katex] g = \frac{(6.67\times 10^{-11}) \times (1.02 \times 10^{13})}{25000^2} [/katex] | Substitute values into the equation for gravitational acceleration. |
5 | [katex] g = 1.09 \times 10^{-6} \, \text{m/s}^2 [/katex] | Final value for [katex]g [/katex],the acceleration due to gravity of the comet. |
6 | [katex] v^2_{\text{final}} = v^2_{\text{initial}} + 2a\Delta x [/katex] | Now that we have [katex] v_{initial}, \, a, \, \Delta x [/katex] we can use a kinematic formula to solve for [katex] v_f [/katex]. |
7 | [katex] \boxed{v_{\text{final}} \approx .735\, \text{m/s}} [/katex] | Plug in all known values and solve for [katex] v_f [/katex]. |
Just ask: "Help me solve this problem."
A simple pendulum consists of a bob of mass 1.8 kg attached to a string of length 2.3 m. The pendulum is held at an angle of 30° from the vertical by a light horizontal string attached to a wall, as shown above.
While traveling in its elliptical orbit around the Sun, Mars gains speed during the part of the orbit where it is getting closer to the Sun. Which of the following can be used to explain this gain in speed?
A linear spring of negligible mass requires a force of \( 18.0 \, \text{N} \) to cause its length to increase by \( 1.0 \, \text{cm} \). A sphere of mass \( 75.0 \, \text{g} \) is then attached to one end of the spring. The distance between the center of the sphere \( M \) and the other end \( P \) of the un-stretched spring is \( 25.0 \, \text{cm} \). Then the sphere begins rotating at constant speed in a horizontal circle around the center \( P \). The distance \( P \) and \( M \) increases to \( 26.5 \, \text{cm} \).
A block starts at rest on a frictionless inclined track which then turns into a circular loop of radius \( R \) and is vertical. In terms of \( R \) and constants, find the minimum height \( h \) above the bottom of the loop the block must start from so it makes it around the loop.
A comet of mass \( m_c = 3.2 \times 10^{14} \) \( \text{kg} \) is orbiting a star with mass \( m_s = 1.8 \times 10^{30} \) \( \text{kg} \). The comet’s orbit is elliptical. At its closest point, the comet is a distance \( r_1 = 8.3 \times 10^{10} \) \( \text{m} \) from the star, and at its farthest point, the comet is a distance \( r_2 = 4.9 \times 10^{11} \) \( \text{m} \) from the star. What is the change in the kinetic energy of the comet as it moves along its orbit from distance \( r_2 \) to distance \( r_1 \) from the star?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.