0 attempts
0% avg
UBQ Credits
# Part (a): At what times is the object 20 m above the ground?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]y = v_0 t + \frac{1}{2} a t^2[/katex] | Use the kinematic equation for vertical displacement where [katex]y[/katex] is the height, [katex]v_0[/katex] is the initial velocity, [katex]t[/katex] is the time, and [katex]a[/katex] is the acceleration. |
2 | [katex]20 = 64 t – \frac{1}{2} \cdot 9.8 \cdot t^2[/katex] | Substitute [katex]y = 20 \text{ m}[/katex], [katex]v_0 = 64 \text{ m/s}[/katex], and [katex]a = -9.8 \text{ m/s}^2[/katex]. Note the negative sign of acceleration due to gravity. |
3 | [katex]4.9 t^2 – 64 t + 20 = 0[/katex] | Rearrange the equation into standard quadratic form [katex]a t^2 + b t + c = 0[/katex] where [katex]a = 4.9[/katex], [katex]b = -64[/katex], and [katex]c = 20[/katex]. |
4 | [katex]t = \frac{64 \pm \sqrt{(-64)^2 – 4 \cdot 4.9 \cdot 20}}{2 \cdot 4.9}[/katex] | Use the quadratic formula [katex]t = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}[/katex] to solve for [katex]t[/katex]. |
5 | [katex]t_1 = \frac{64 + 60.88}{9.8} \approx 12.74 \text{ s}, \\ t_2 = \frac{64 – 60.88}{9.8} \approx 0.32 \text{ s}[/katex] | Calculate the two possible values for [katex]t[/katex]. The results are [katex]t_1 \approx 12.74 \text{ s}[/katex] and [katex]t_2 \approx 0.32 \text{ s}[/katex]. |
6 | [katex]t = 0.32 \text{ s}, 12.74 \text{ s}[/katex] | Final answer: There are two times when the object is 20 m above the ground, at [katex]0.32 \text{ s}[/katex] and [katex]12.74 \text{ s}[/katex]. |
# Part (b): Why are there two answers for part (a)?
Step | Explanation | Reasoning |
---|---|---|
1 | Two Answers Explanation | There are two answers because the object passes 20 m twice: once while going up and once while coming back down. |
# Part (c): How long does it take to come back to the ground?
Step | Derivation/Formula/Answer | Reasoning |
---|---|---|
1 | [katex]y = v_0 t + \frac{1}{2} a t^2[/katex] | Use the kinematic equation for vertical displacement where [katex]y[/katex] is zero as it returns to the ground. |
2 | [katex]0 = 64 t – \frac{1}{2} \cdot 9.8 \cdot t^2[/katex] | Substitute [katex]y = 0 \text{ m}[/katex], [katex]v_0 = 64 \text{ m/s}[/katex], and [katex]a = -9.8 \text{ m/s}^2[/katex]. |
3 | [katex]0 = 64 t – 4.9 t^2[/katex] | Simplify the equation by calculating [katex]\frac{1}{2} \cdot 9.8 = 4.9[/katex]. |
4 | [katex]0 = t (64 – 4.9t)[/katex] | Factor out [katex]t[/katex] to solve for the time at which the object returns to the ground. |
5 | [katex]t = 0 \quad \text{or} \quad 64 = 4.9t \Rightarrow t = \frac{64}{4.9} \approx 13.06 \text{ s}[/katex] | The first solution [katex]t = 0[/katex] corresponds to the initial throw. Solving [katex]64 – 4.9t = 0[/katex] gives the time it takes to reach the ground. |
6 | [katex]t = 13.06 \text{ s}[/katex] | Final answer: The object takes [katex]13.06 \text{ s}[/katex] to come back to the ground. |
Just ask: "Help me solve this problem."
Which graph below shows that one of the runners started 10 meters further ahead of the other? Assume the y-axis is measured in meters and the x-axis is measured in seconds.
The first \(10 \, \text{meters}\) of a \(100 \, \text{meter}\) dash are covered in \(2 \, \text{seconds}\) by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining \(90 \, \text{meters}\) are run with the same velocity the sprinter had after \(2 \, \text{seconds}\).
A whiffle ball is tossed straight up, reaches a highest point, and falls back down. Air resistance is not negligible. Which of the following statements are true?
At time \( t = 0 \), a cart is at \( x = 10 \, \text{m} \) and has a velocity of \( 3 \, \text{m/s} \) in the \( -x \) direction. The cart has a constant acceleration in the \( +x \) direction with magnitude \( 3 \, \text{m/s}^2 < a < 6 \, \text{m/s}^2 \). Which of the following gives the possible range of the position of the cart at \( t = 1 \, \text{s} \)?
A boat is rowed directly upriver at a speed of \(2.5 \, \text{m/s}\) relative to the water. Viewers on the shore find that it is moving at only \(0.5 \, \text{m/s}\) relative to the shore. What is the speed of the river? Is it moving with or against the boat?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.