0 attempts
0% avg
UBQ Credits
# Part (a): At what times is the object 20 m above the ground?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]y = v_0 t + \frac{1}{2} a t^2[/katex] | Use the kinematic equation for vertical displacement where [katex]y[/katex] is the height, [katex]v_0[/katex] is the initial velocity, [katex]t[/katex] is the time, and [katex]a[/katex] is the acceleration. |
2 | [katex]20 = 64 t – \frac{1}{2} \cdot 9.8 \cdot t^2[/katex] | Substitute [katex]y = 20 \text{ m}[/katex], [katex]v_0 = 64 \text{ m/s}[/katex], and [katex]a = -9.8 \text{ m/s}^2[/katex]. Note the negative sign of acceleration due to gravity. |
3 | [katex]4.9 t^2 – 64 t + 20 = 0[/katex] | Rearrange the equation into standard quadratic form [katex]a t^2 + b t + c = 0[/katex] where [katex]a = 4.9[/katex], [katex]b = -64[/katex], and [katex]c = 20[/katex]. |
4 | [katex]t = \frac{64 \pm \sqrt{(-64)^2 – 4 \cdot 4.9 \cdot 20}}{2 \cdot 4.9}[/katex] | Use the quadratic formula [katex]t = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}[/katex] to solve for [katex]t[/katex]. |
5 | [katex]t_1 = \frac{64 + 60.88}{9.8} \approx 12.74 \text{ s}, \\ t_2 = \frac{64 – 60.88}{9.8} \approx 0.32 \text{ s}[/katex] | Calculate the two possible values for [katex]t[/katex]. The results are [katex]t_1 \approx 12.74 \text{ s}[/katex] and [katex]t_2 \approx 0.32 \text{ s}[/katex]. |
6 | [katex]t = 0.32 \text{ s}, 12.74 \text{ s}[/katex] | Final answer: There are two times when the object is 20 m above the ground, at [katex]0.32 \text{ s}[/katex] and [katex]12.74 \text{ s}[/katex]. |
# Part (b): Why are there two answers for part (a)?
Step | Explanation | Reasoning |
---|---|---|
1 | Two Answers Explanation | There are two answers because the object passes 20 m twice: once while going up and once while coming back down. |
# Part (c): How long does it take to come back to the ground?
Step | Derivation/Formula/Answer | Reasoning |
---|---|---|
1 | [katex]y = v_0 t + \frac{1}{2} a t^2[/katex] | Use the kinematic equation for vertical displacement where [katex]y[/katex] is zero as it returns to the ground. |
2 | [katex]0 = 64 t – \frac{1}{2} \cdot 9.8 \cdot t^2[/katex] | Substitute [katex]y = 0 \text{ m}[/katex], [katex]v_0 = 64 \text{ m/s}[/katex], and [katex]a = -9.8 \text{ m/s}^2[/katex]. |
3 | [katex]0 = 64 t – 4.9 t^2[/katex] | Simplify the equation by calculating [katex]\frac{1}{2} \cdot 9.8 = 4.9[/katex]. |
4 | [katex]0 = t (64 – 4.9t)[/katex] | Factor out [katex]t[/katex] to solve for the time at which the object returns to the ground. |
5 | [katex]t = 0 \quad \text{or} \quad 64 = 4.9t \Rightarrow t = \frac{64}{4.9} \approx 13.06 \text{ s}[/katex] | The first solution [katex]t = 0[/katex] corresponds to the initial throw. Solving [katex]64 – 4.9t = 0[/katex] gives the time it takes to reach the ground. |
6 | [katex]t = 13.06 \text{ s}[/katex] | Final answer: The object takes [katex]13.06 \text{ s}[/katex] to come back to the ground. |
Just ask: "Help me solve this problem."
Which of these scenarios involve accelerated motion? (Select all that apply)
A ball is thrown straight up with a speed of \( 30 \) \( \text{m/s} \), and air resistance is negligible.
A rollercoaster leaves the station at rest. Its speed increases steadily for \( 6 \) \( \text{s} \) as it heads down the first drop. The ride then levels out and it moves at a constant speed for \( 4 \) \( \text{s} \) before hitting the brakes and stopping in \( 3 \) \( \text{s} \). Draw the velocity vs. time graph or explain it in terms of functions.
A ball is tossed directly upward. Its total time in the air is \( T \). Its maximum height is \( H \). What is its height after it has been in the air a time \( T/4 \)? Air resistance is negligible.
A car travels at \( 20 \, \text{m/s} \) for \( 5 \, \text{mins} \) and then travels another \( 2 \, \text{km} \) at \( 40 \, \text{m/s} \). What is the total distance traveled and time of travel for the car?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?