0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \( V = \frac{4}{3} \pi r^3 \) | Calculate the volume of the spherical ball. The volume \( V \) is given by the formula for the volume of a sphere, where \( r \) is the radius of the sphere. |
| 2 | \( r = 0.4 \, \text{m} \) | The radius is given as 40 cm, which needs to be converted to meters for consistency in SI units. \( 40 \, \text{cm} = 0.4 \, \text{m} \). |
| 3 | \( V = \frac{4}{3} \pi (0.4)^3 \approx 0.268 \, \text{m}^3 \) | Substitute \( r = 0.4 \, \text{m} \) into the volume formula to find the volume. |
| 4 | \( F_b = \rho_{\text{liquid}} V g \) | Use the formula for buoyant force \( F_b \), where \( \rho_{\text{liquid}} \) is the density of the liquid, \( V \) is the volume, and \( g \) is the gravitational acceleration. |
| 5 | \( \rho_{\text{liquid}} = 1.4 \times 10^3 \, \text{kg/m}^3 \) | The problem states the density of the liquid as \( 1.4 \times 10^3 \, \text{kg/m}^3 \). |
| 6 | \( g = 9.8 \, \text{m/s}^2 \) (approx.) | The standard gravitational acceleration on the surface of the Earth is approximately \( 9.8 \, \text{m/s}^2 \). |
| 7 | \( F_b = (1.4 \times 10^3) \times 0.268 \times 9.8 \approx 3688.1 \, \text{N} \) | Calculate the buoyant force using the relevant values of density, volume, and gravitational acceleration. |
| 8 | \( F_g = mg \) | The gravitational force on the ball is its weight, given by the product of its mass \( m \) and gravitational acceleration \( g \). The ball will sink if \( F_g > F_b \). |
| 9 | \( m \cdot 9.8 > 3688.1 \) | The ball will start to sink if the gravitational force is greater than the buoyant force. |
| 10 | \( m > \frac{3688.1}{9.8} \approx 376.34 \, \text{kg} \) | Rearrange the inequality to solve for mass \( m \). The mass must be greater than this value to sink in the liquid. |
| 11 | Correct choice: Option (b) | \(376.5 \, \text{kg} > 376.34 \, \text{kg} \) thus is enough to sink the object. |
Just ask: "Help me solve this problem."
A small rock sits at the bottom of a cup filled with water. The upward force exerted by the water on the rock is \( F_0 \). The water is then poured out and replaced by an oil that is \( \frac{3}{4} \) as dense as water, and the rock again sits at the bottom of the cup, completely under the oil. Which of the following expressions correctly represents the magnitude of the upward force exerted by the oil on the rock?

You have a giant cask of water with a spigot some height below the water surface. The surface of the water, which is essentially at rest, is exposed to atmosphere (\( \approx 10^5 \text{Pa} \)). The water density is \( \approx 1000 \text{kg/m}^3 \). The water pours out of the spigot at \( 3 \text{m/s} \). How far below the water surface is the spigot positioned?
Caleb is filling up water balloons for the Physics Olympics balloon toss competition. Caleb sets a \( 0.50 \text{-kg} \) spherical water balloon on the kitchen table and notices that the bottom of the balloon flattens until the pressure on the bottom is reduced to \( 630 \frac{\text{N}}{\text{m}^2} \). What is the area of the flat spot on the bottom of the balloon?
A Venturi tube has a pressure difference of \( 15\,000 \) \( \text{Pa} \). The entrance radius is \( 3 \) \( \text{cm} \), while the exit radius is \( 1 \) \( \text{cm} \). What are the entrance velocity, exit velocity, and flow rate if the fluid is gasoline \( (\rho = 700 \) \( \text{kg/m}^3 ) \)?
A cube of unknown material and uniform density floats in a container of water with \(60\%\) of its volume submerged. If this same cube were placed in a container of oil with density \(800\) \(\text{kg/m}^3\), what portion of the cube’s volume would be submerged while floating?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?