Overview

How to Memorize AP Physics Formulas Fast: 4 Proven Techniques That Actually Work

Picture of Jason Kuma
Jason Kuma

Writer | Coach | Builder | Fremont, CA

Article Content

The top physics students don’t actually “memorize” formulas. Here are four techniques to help you master your formula sheet and stop blanking out during tests.

1. Use Units!

One of the easiest ways to remember a formula is to look at the units. If you know that Velocity is measured in meters per second (m/s), the formula must involve a distance (meters) divided by time (seconds).

  • The Trick: If you forget a formula, look at the units required for the answer. They will often tell you exactly what math you need to do.

2. Conceptual Logic

Every physics formula is just a sentence written in math. Instead of memorizing letters, learn what they represent.

  • Example: \(F=ma\) (Newton’s Second Law).
  • The Story: “The harder I push something (Force), the faster it will speed up (Acceleration), but the heavier it is (Mass), the harder it is to get it moving.”
  • Relationships: Understand how to apply directly proportional and inversely proportional relationships.

3. Formula Derivation

Most complex formulas are just smaller formulas put together. If you know the basic definitions, you can “build” the harder ones.

Why this works: You only have to memorize 3 or 4 “root” equations. The rest you can figure out on the fly. This reduces your mental load and helps you apply physics logic directly.

To see how these connections work, you can get a free PDF of base vs. derived formulas with full explanations. This helps you stop memorizing and start using logic.

4. Practice with Purpose

You cannot memorize physics by just reading a list. You need “active recall.”

The Method: Solve a problem, but keep your formula sheet in another room. Try to recall the formula first. If you can’t, go look at it, then come back and write it down from memory. Same goes for core concepts and principles.

That’s it. Physics formulas aren’t something you memorize — they’re something you understand. When you use units, logic, derivations, and active recall, formulas stop being random symbols and start feeling inevitable.

This might be a lot. So if you’re just getting started and want a clear, structured path, we built an 8-week program that teaches physics from the ground up — no notes, no memorization, just real understanding and problem solving strategies.

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

Metric Prefixes

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Phy Pro

One price to unlock most advanced version of Phy across all our tools.

$11.99

per month

Billed Monthly. Cancel Anytime.

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.

Trusted by 10k+ Students
Try UBQ

1000+ Physics test questions sorted by topic. 100% free with AI powered problem solving help. 

Stuck on a problem? Try Phy AI

The world’s most accurate AI Physics and Math problem solver.

Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed

Thanks for reading Nerd-Notes!

If you got 2 seconds, log in for more free tools.

By continuing, you agree to the updated Terms of Sale, Terms of Use, and Privacy Policy.

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.