^{2}. At *t _{1}* the rocket engine is shut down and the sled moves with constant velocity

- (a) Find t1
*(3 points)* - (b) Find t2
*(3 points)* - (c) Find v
*(4 points)*

*t _{1 = }*4.65 s

*t _{2 = }*85.35 s

*v = *60.5 m/s

Phy can also check your working. Just snap a picture!

- Statistics

Intermediate

Mathematical

GQ

A truck is traveling at 35 m/s when the driver realizes the truck as no breaks. He sees a ramp off the road, inclined at 20°, and decides to go up it to help the truck come to a stop. How far does the truck travel before coming to a stop (assume no friction).

- 1D Kinematics, Linear Forces

Beginner

Mathematical

GQ

A car travels at 20 m/s for 5 minutes and then travels another 2 km at 40 m/s. What is the total

distance traveled and time of travel for the car?

- 1D Kinematics

Intermediate

Conceptual

MCQ

Two identical metal balls are being held side by side at the top of a ramp. Alex lets one ball, 4, start rolling down the hill. A few seconds later, Alex’ partner, Bob starts the second ball, B, down the hill by giving it a push. Ball B rolls down the hill along a line parallel to the path of the first ball and passes it. At the instant ball B passes ball A:

- 1D Kinematics

Beginner

Mathematical

GQ

A car accelerates from rest with an acceleration of 4.3 \text{ m/s}^2 for a time of 6.8 s. The car then slows to a stop with an acceleration of 5.1 \, \text{m/s}^2. What is the total distance traveled by the car?

- 1D Kinematics

Advanced

Mathematical

MCQ

*v*, and reaches a maximum height *h*. At what height was the baseball moving with one-half its original velocity? Assume air resistance is negligible.

- 1D Kinematics, Energy

Beginner

Conceptual

MCQ

Consider a ball thrown up from the surface of the earth into the air at an angle of 30° above the horizontal. Air resistance is negligible. The ball’s acceleration just after release is most nearly

- 1D Kinematics, Free Fall

Intermediate

Mathematical

GQ

A mine shaft is known to be 57.8 m deep. If you dropped a rock down the shaft, how long would it take for you to hear the sound of the rock hitting the bottom of the shaft knowing that sound travels at a constant velocity of 345 m/s?

- 1D Kinematics

Intermediate

Mathematical

FRQ

A rocket is sent to shoot down an invading spacecraft that is hovering at an altitude of 1500 meters. The rocket is launched with an initial velocity of 180 m/s. Find the following:

- 1D Kinematics

Intermediate

Mathematical

FRQ

Divers in Acapulco jump from a cliff that is 36m above the water with an initial vertical velocity of

2 m/s.

- 1D Kinematics

Advanced

Mathematical

MCQ

An object undergoes constant acceleration. Starting from rest, the object travels 5 meters in the first second. Then it travels 15 meters in the next second. What total distance will be covered after the 3rd second?

- 1D Kinematics

*t _{1 = }*4.65 s

*t _{2 = }*85.35 s

*v = *60.5 m/s

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

\Delta x = v_i t + \frac{1}{2} at^2 | F = ma |

v = v_i + at | F_g = \frac{G m_1m_2}{r^2} |

a = \frac{\Delta v}{\Delta t} | f = \mu N |

R = \frac{v_i^2 \sin(2\theta)}{g} |

Circular Motion | Energy |
---|---|

F_c = \frac{mv^2}{r} | KE = \frac{1}{2} mv^2 |

a_c = \frac{v^2}{r} | PE = mgh |

KE_i + PE_i = KE_f + PE_f |

Momentum | Torque and Rotations |
---|---|

p = m v | \tau = r \cdot F \cdot \sin(\theta) |

J = \Delta p | I = \sum mr^2 |

p_i = p_f | L = I \cdot \omega |

Simple Harmonic Motion |
---|

F = -k x |

T = 2\pi \sqrt{\frac{l}{g}} |

T = 2\pi \sqrt{\frac{m}{k}} |

Constant | Description |
---|---|

g | Acceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface |

G | Universal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2 |

\mu_k and \mu_s | Coefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion. |

k | Spring constant, in \text{N/m} |

M_E = 5.972 \times 10^{24} , \text{kg} | Mass of the Earth |

M_M = 7.348 \times 10^{22} , \text{kg} | Mass of the Moon |

M_M = 1.989 \times 10^{30} , \text{kg} | Mass of the Sun |

Variable | SI Unit |
---|---|

s (Displacement) | \text{meters (m)} |

v (Velocity) | \text{meters per second (m/s)} |

a (Acceleration) | \text{meters per second squared (m/s}^2\text{)} |

t (Time) | \text{seconds (s)} |

m (Mass) | \text{kilograms (kg)} |

Variable | Derived SI Unit |
---|---|

F (Force) | \text{newtons (N)} |

E, PE, KE (Energy, Potential Energy, Kinetic Energy) | \text{joules (J)} |

P (Power) | \text{watts (W)} |

p (Momentum) | \text{kilogram meters per second (kgm/s)} |

\omega (Angular Velocity) | \text{radians per second (rad/s)} |

\tau (Torque) | \text{newton meters (Nm)} |

I (Moment of Inertia) | \text{kilogram meter squared (kgm}^2\text{)} |

f (Frequency) | \text{hertz (Hz)} |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`\text{5 km}`

Use the conversion factors for kilometers to meters and meters to millimeters:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}`

Perform the multiplication:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}`

Simplify to get the final answer:

`\boxed{5 \times 10^6 \, \text{mm}}`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | 10^{-12} | 0.000000000001 |

Nano- | n | 10^{-9} | 0.000000001 |

Micro- | µ | 10^{-6} | 0.000001 |

Milli- | m | 10^{-3} | 0.001 |

Centi- | c | 10^{-2} | 0.01 |

Deci- | d | 10^{-1} | 0.1 |

(Base unit) | – | 10^{0} | 1 |

Deca- or Deka- | da | 10^{1} | 10 |

Hecto- | h | 10^{2} | 100 |

Kilo- | k | 10^{3} | 1,000 |

Mega- | M | 10^{6} | 1,000,000 |

Giga- | G | 10^{9} | 1,000,000,000 |

Tera- | T | 10^{12} | 1,000,000,000,000 |

- Some answers may be slightly off by 1% depending on rounding, etc.
- Answers will use different values of gravity. Some answers use 9.81 m/s
^{2}, and other 10 m/s^{2 }for calculations. - Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
- Bookmark questions that you can’t solve so you can come back to them later.
- Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

The most advanced version of Phy. Currently 50% off, for early supporters.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages
- Unlimited Image Uploads
- Unlimited Smart Actions
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- 200% Memory Boost
- 150% Better than GPT
- 75% More Accurate, 50% Faster
- Mobile Snaps
- Focus Mode
- No Ads