0 attempts

0% avg

UBQ Credits

Objective: Calculate the final speed of the space probe after firing its rockets and burning fuel.

Step | Formula Derivation | Reasoning |
---|---|---|

1 | [katex]F = ma[/katex] | Newton’s second law, force equals mass times acceleration. |

2 | [katex]a = \frac{F}{m}[/katex] | Rearrange to solve for acceleration, [katex]a[/katex]. |

3 | [katex]a = \frac{156 \times 10^3\text{ N}}{1312\text{ kg}}[/katex] | Substitute the thrust ([katex]F[/katex]) and initial mass of the probe ([katex]m[/katex]). Note: Mass will change, this is initial acceleration. |

4 | [katex]a_{\text{initial}} = 118.9\text{ m/s}^2[/katex] | Calculate the initial acceleration. Note: This will change as the probe burns fuel. |

5 | [katex]\Delta v = a \Delta t[/katex] | The change in velocity is the product of acceleration and time. |

6 | [katex]v_{\text{final}} = v_{\text{initial}} + \Delta v[/katex] | The final velocity is the initial velocity plus the change in velocity. |

The acceleration will not be constant because the mass of the probe changes as it burns fuel. However, we can integrate the force over the time to find the change in velocity, considering the change in mass.

**For the Change in Velocity (Variable Mass)**

Step | Formula Derivation | Reasoning |
---|---|---|

1 | [katex]\Delta v = \int_{0}^{t} \frac{F}{m(t)} dt[/katex] | With variable mass, acceleration changes over time. |

2 | [katex]m(t) = m_{\text{initial}} – \frac{dm}{dt}t[/katex] | Mass as a function of time, where [katex]\frac{dm}{dt}[/katex] is the rate of mass loss. |

3 | [katex]\frac{dm}{dt} = \frac{150\text{ kg}}{220\text{ s}}[/katex] | Calculate the rate of mass loss. |

4 | [katex]\Delta v = \int_{0}^{220\text{ s}} \frac{156 \times 10^3\text{ N}}{1312\text{ kg} – \left(\frac{150\text{ kg}}{220\text{ s}}\right)t} dt[/katex] | Substitute [katex]m(t)[/katex], [katex]F[/katex], and burn time into the integral. |

This integral represents the change in momentum over the time period, taking into account the loss of mass from the fuel burn. Let’s calculate the integral to find the change in velocity and then determine the final speed of the space probe.

Final speed of the space probe: [katex]\boxed{v_{\text{final}} = 42.58 \text{ km/s}}[/katex]

Just ask: "Help me solve this problem."

- Statistics

Advanced

Conceptual

MCQ

A fisherman is standing in the back of his small fishing boat (the mass of the fisherman is the same as the mass of the boat) and he is a few meters from shore. He is done fishing so he starts walking towards the shore so he can get off the boat. What happens to the boat and the fisherman? Select all that apply and assume there is no friction between the boat and the water.

- Momentum

Intermediate

Mathematical

GQ

Traveling at a speed of 15.9 m/s, the driver of an automobile suddenly locks the wheels by slamming on the brakes. The coefficient of kinetic friction between the tires and the road is 0.659. What is the speed of the automobile after 1.59 s have elapsed? Ignore the effects of air resistance.

- 1D Kinematics, Linear Forces

Intermediate

Proportional Analysis

GQ

A child on Earth has a weight of 500N. Determine the weight of the child if the earth was to triple in both mass and radius (3M and 3r).

- Gravitation, Linear Forces

Advanced

Mathematical

FRQ

A block of mass M_{1} travels horizontally with a constant speed v_{0} on a plateau of height H until it comes to a cliff. A toboggan of mass M_{2} is positioned on level ground below the cliff. The center of the toboggan is a distance D from the base of the cliff.

- Momentum, Projectiles

Intermediate

Mathematical

MCQ

A platform is initially rotating on smooth ice with negligible friction, as shown above. A stationary disk is dropped directly onto the center of the platform. A short time later, the disk and platform rotate together at the same angular velocity, as shown at right in the figure. How does the angular momentum of only the platform change, if at all, after the disk drops? And what is the best justification.

- Angular Momentum, Momentum, Rotational Motion, Torque

42.58 km/s

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |

\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |

\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |

\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |

\(v^2 = v_f^2 \,-\, 2a \Delta x\) |

Circular Motion | Energy |
---|---|

\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |

\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |

\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |

\(W = Fd \cos\theta\) |

Momentum | Torque and Rotations |
---|---|

\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |

\(J = \Delta p\) | \(I = \sum mr^2\) |

\(p_i = p_f\) | \(L = I \cdot \omega\) |

Simple Harmonic Motion | Fluids |
---|---|

\(F = -kx\) | \(P = \frac{F}{A}\) |

\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |

\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |

\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |

\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |

Constant | Description |
---|---|

[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |

[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |

[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |

[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |

[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |

[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |

[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |

Variable | SI Unit |
---|---|

[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |

[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |

[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |

[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |

[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |

Variable | Derived SI Unit |
---|---|

[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |

[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |

[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |

[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |

[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |

[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |

[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |

[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`[katex]\text{5 km}[/katex]`

Use the conversion factors for kilometers to meters and meters to millimeters:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]`

Perform the multiplication:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]`

Simplify to get the final answer:

`[katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |

Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |

Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |

Milli- | m | [katex]10^{-3}[/katex] | 0.001 |

Centi- | c | [katex]10^{-2}[/katex] | 0.01 |

Deci- | d | [katex]10^{-1}[/katex] | 0.1 |

(Base unit) | – | [katex]10^{0}[/katex] | 1 |

Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |

Hecto- | h | [katex]10^{2}[/katex] | 100 |

Kilo- | k | [katex]10^{3}[/katex] | 1,000 |

Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |

Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |

Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |

- 1. Some answers may vary by 1% due to rounding.
- Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
- Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
- Bookmark questions you can’t solve to revisit them later
- 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages and Images
- Unlimited UBQ Credits
- 157% Better than GPT
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- All Smart Actions
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.

Submitting counts as 1 attempt.

Viewing answers or explanations count as a failed attempts.

Phy gives partial credit if needed

MCQs and GQs are are 1 point each. FRQs will state points for each part.

Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.

Understand you mistakes quicker.

Phy automatically provides feedback so you can improve your responses.

10 Free Credits To Get You Started