0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\tau = r \times F[/katex] | Torque ([katex]\tau[/katex]) is calculated as the product of the radial distance ([katex]r[/katex]) and the force applied ([katex]F[/katex]). The force here could be the result of the weights due to the masses. |
2 | [katex]F = mg[/katex] | Force due to gravity is calculated by multiplying the mass ([katex]m[/katex]) by the acceleration due to gravity ([katex]g[/katex], approximately [katex]9.8 \, \text{m/s}^2[/katex]). |
3 | [katex] \tau_{\text{left}} = 0.5 \, \text{m} \times 0.1 \, \text{kg} \times 9.8 \, \text{m/s}^2 [/katex] [katex] \tau_{\text{left}} = 0.49 \, \text{Nm} [/katex] |
The torque produced by the mass on the left end. The radial distance here is half a meter since it’s at the end of half the length of the meter stick. |
4 | [katex] \tau_{\text{right}} = 0.5 \, \text{m} \times 0.15 \, \text{kg} \times 9.8 \, \text{m/s}^2 [/katex] [katex] \tau_{\text{right}} = 0.735 \, \text{Nm} [/katex] |
The torque produced by the mass on the right end, using similar calculations as for the left side. |
5 | [katex] \text{Net } \tau = \tau_{\text{right}} – \tau_{\text{left}} [/katex] [katex] \text{Net } \tau = 0.735 \, \text{Nm} – 0.49 \, \text{Nm} [/katex] [katex] \text{Net } \tau = 0.245 \, \text{Nm} [/katex] |
Calculate the net torque on the meter stick. Since the stick is in rotational equilibrium, this net torque has to be counteracted by the tension in the string. |
6 | [katex] T \times 0.5 \, \text{m} = 0.245 \, \text{Nm} [/katex] | Set the torque due to the tension ([katex]T[/katex]) equal to the net torque. The distance from the pivot to the left end is [katex]0.5 \, \text{m}[/katex]. |
7 | [katex] T = \frac{0.245 \, \text{Nm}}{0.5 \, \text{m}} [/katex] [katex] T = 0.49 \, \text{N} [/katex] |
Solve for the tension [katex]T[/katex] in the string supporting the left end of the meter stick. |
8 | [katex] T = 0.49 \, \text{N} [/katex] | Final answer: The tension in the string supporting the left end of the meter stick is 0.49 Newtons. |
Just ask: "Help me solve this problem."
A \(30 \, \text{g}\) bullet is fired with a speed of \(500 \, \text{m/s}\) into a wall.
Three identical blocks are being pulled or pushed across a rough horizontal surface by force of identical magnitude F, as shown in the drawing below. Rank the kinetic frictional forces that act on the blocks from smallest to greatest.
Three students are pulling on a bag of skittles. Each is pulling with a horizontal force. If student 1 pulls Eastward with [katex]170 \, \text{N}[/katex], student 2 pulls Southward with [katex]100 \, \text{N}[/katex] and student 3 pulls with [katex]200 \, \text{N}[/katex] at an angle of [katex]20^\circ [/katex] west of north, what is the net force caused by the three students on the bag of skittles?
A block starts from rest at the top of a 50° incline. The coefficient of kinetic friction between the block and the incline is 0.4. If the block reaches a velocity of 7 m/s at the bottom of the incline, what is the length of the incline?
In the diagram above block A has a mass of 3.2 kg and block B a mass of 2.4 kg. The pulley is frictionless and has no mass.
.49 N
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.