0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[a_{t} = \alpha \; r = (-0.82\,\text{rad/s}^2)(12\,\text{m}) = -9.84\,\text{m/s}^2\] | This calculates the tangential acceleration by multiplying the angular acceleration \(\alpha\) with the radius \(r\). The negative sign indicates the tangential acceleration opposes the direction of motion along the track. |
2 | \[a_{n} = r\omega^2 = 12\,\text{m}\,(1.8\,\text{rad/s})^2 = 12\,(3.24) = 38.88\,\text{m/s}^2\] | This computes the centripetal (normal) acceleration directed toward the center of the circle using the formula \(a_{n} = r\omega^2\). |
3 | \[a = \sqrt{a_t^2 + a_n^2} = \sqrt{(-9.84)^2 + (38.88)^2} = \sqrt{96.81 + 1512.83} = \sqrt{1609.64} \approx 40.12\,\text{m/s}^2\] | The total acceleration is the vector sum of the perpendicular tangential and centripetal components, found using the Pythagorean theorem. |
4 | \[\theta = \arctan\left(\frac{|a_t|}{a_n}\right) = \arctan\left(\frac{9.84}{38.88}\right) \approx \arctan(0.253) \approx 14.2^\circ\] | This angle is measured relative to the horizontal inward (centripetal) direction. Since the tangential acceleration is negative (acting downward while the car moves upward), the net acceleration is directed \(14.2^\circ\) below the horizontal inward direction. |
5 | \[\boxed{a \approx 40.1\,\text{m/s}^2 \quad \text{at } 14.2^\circ \text{ below the horizontal (inward)}}\] | This is the final answer for the magnitude and direction of the acceleration of the car on the loop. |
Just ask: "Help me solve this problem."
At time \( t = 0 \), a disk starts from rest and begins spinning about its center with a constant angular acceleration of magnitude \( \alpha \). At time \( t_f \), the disk has angular speed \( \omega_f \). Which of the following expressions correctly compares the final angular displacement \( \theta_f \) of the disk at time \( t_f \) to the angular displacement \( \theta_{1/2} \) at time \( \frac{t_f}{2} \)?
Flywheels (rapidly rotating disks) are widely used in industry for storing energy. They are spun up slowly when extra energy is available, then decelerate quickly when needed to supply a boost of energy. A flywheel, \( 20 \, \text{cm}\) in diameter can spin at \( 20 \, \text{rpm}\).
A new car is tested on a 230-m-diameter track. If the car speeds up at a steady [katex] 1.4 \, m/s^2[/katex], how long after starting is the magnitude of its centripetal acceleration equal to the tangential acceleration?
A car accelerates from \( 0 \) to \( 25 \) \( \text{m/s} \) in \( 5 \) \( \text{s} \). If the car’s tires have a diameter of \( 70 \) \( \text{cm} \), how many revolutions does a tire make while accelerating?
A centrifuge rotor rotating at \( 9200 \) \( \text{rpm} \) is shut off and is eventually brought uniformly to rest by a frictional torque of \( 1.20 \) \( \text{N} \cdot \text{m} \). If the mass of the rotor is \( 3.10 \) \( \text{kg} \) and it can be approximated as a solid cylinder of radius \( 0.0710 \) \( \text{m} \), through how many revolutions will the rotor turn before coming to rest? The moment of inertia of a cylinder is given by \( \frac{1}{2} m r^2 \).
\(40.1\,\text{m/s}^2 \quad 14.2^\circ\text{ below the horizontal (inward)}\)
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.