0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(v_f = v_i + at \) | Use the first equation of motion to relate the initial velocity, final velocity, and time. |
2 | \(0 \, \text{m/s} = 5.0 \, \text{m/s} – 9.8 \, \text{m/s}^2 \cdot t \) | At maximum height, the final velocity \(v_f\) is zero, the initial velocity \(v_i\) is \(5.0 \, \text{m/s}\), and the acceleration \(a\) is \(-9.8 \, \text{m/s}^2\) (due to gravity). |
3 | \( t = \frac{5.0 \, \text{m/s}}{9.8 \, \text{m/s}^2} \approx 0.51 \, \text{s} \) | Calculate the time interval for the rock to reach its maximum height. This is only the time to reach the maximum height, so the total time to fall back to the original location is double this time. |
4 | \( t_{\text{total}} = 2 \cdot 0.51 \, \text{s} \approx 1.02 \, \text{s} \) | Multiply by 2 to get the total time interval for the rock to return to its original location. |
5 | \(\boxed{1.02 \, \text{s}}\) | Final answer for part (a) |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(v_f = v_i + at \) | Use the first equation of motion to relate the initial velocity, final velocity, and time. |
2 | \(v_f = 5.0 \, \text{m/s} – 9.8 \, \text{m/s}^2 \cdot 1.02 \, \text{s} \) | The initial velocity \(v_i\) is \(5.0 \, \text{m/s}\), the acceleration \(a\) is \(-9.8 \, \text{m/s}^2\) (due to gravity), and the total time \(t\) is \(1.02 \, \text{s}\). |
3 | \(v_f \approx 5.0 \, \text{m/s} – 10.0 \, \text{m/s} = -5.0 \, \text{m/s} \) | Calculate the final velocity when the rock returns to the same height. Note the negative sign indicates the direction is downward. |
4 | \(\boxed{-5.0 \, \text{m/s}}\) | Final answer for part (b). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(a = -g\) | Acceleration due to gravity is always acting downward. |
2 | \(a = -9.8 \, \text{m/s}^2\) | Even at maximum height, the acceleration due to gravity remains \(-9.8 \, \text{m/s}^2\). |
3 | \(\boxed{-9.8 \, \text{m/s}^2}\) | Final answer for part (c). |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(v_f = 0 \, \text{m/s}\) | At maximum height, the velocity of the rock is zero as it changes direction. |
2 | \(\boxed{0 \, \text{m/s}}\) | Final answer for part (d) |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(v_f^2 = v_i^2 + 2a\Delta x\) | Use the third equation of motion to relate initial velocity, final velocity, acceleration, and displacement. |
2 | \(0 = (5.0 \, \text{m/s})^2 + 2(-9.8 \, \text{m/s}^2)\Delta x\) | At maximum height, the final velocity \(v_f\) is zero. The initial velocity \(v_i\) is \(5.0 \, \text{m/s}\), and acceleration \(a\) is \(-9.8 \, \text{m/s}^2\). |
3 | \(0 = 25 – 19.6 \Delta x \) | Simplify the equation. |
4 | \( 19.6 \Delta x = 25 \) | Rearrange the equation to solve for height \( \Delta x \). |
5 | \( \Delta x = \frac{25}{19.6} \approx 1.28 \, \text{m} \) | Calculate the maximum height using the final value obtained from the rearranged equation. |
6 | \( \boxed{1.28 \, \text{m}} \) | Final answer for part (e). |
Just ask: "Help me solve this problem."
The alarm at a fire station rings and a 79.34-kg fireman, starting from rest, slides down a pole to the floor below (a distance of 4.20 m). Just before landing, his speed is 1.36 m/s. What is the magnitude of the kinetic frictional force exerted on the fireman as he slides down the pole?
Which of the following graphs shows runners moving at the same speed? Assume the y-axis is measured in meters and the x-axis is measured in seconds.
An object undergoes constant acceleration. Starting from rest, the object travels \( 5 \, \text{m} \) in the first second. Then it travels \( 15 \, \text{m} \) in the next second. What additional distance will be covered in the third second?
Ball 1 is dropped from rest at time \( t = 0 \) from a tower of height \( h \). At the same instant, ball 2 is launched upward from the ground with the initial speed \( v_0 \). If air resistance is negligible, at what time \( t \) will the two balls pass each other?
A cart with an initial velocity of 5.0 m/s to the right experiences a constant acceleration of 2.0 m/s2 to the right. What is the cart’s displacement during the first 6.0 s of this motion?
A) \( 1.02 \, \text{s} \)
B) \( -5 \, \text{m/s} \)
C) \( -9.8 \, \text{m/s}^2 \)
D) \( 0 \, \text{m/s} \)
E) \( 1.28 \, \text{m} \)
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) | Â |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
 | \(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.Â
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.Â
Submitting counts as 1 attempt.Â
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.Â
10 Free Credits To Get You StartedÂ
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.Â