0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[K = \frac{1}{2}M v_x^2 + \frac{1}{2}I \left(\frac{v_x}{R}\right)^2\] | This is the total kinetic energy for a rolling object, combining translational and rotational kinetic energy. |
2 | \[K_{sphere} = \frac{1}{2}M v_x^2 + \frac{1}{2}\left(\frac{2}{5}MR^2\right)\left(\frac{v_x}{R}\right)^2\] | Substitute the moment of inertia for a solid sphere into the general kinetic energy formula. |
3 | \[K_{sphere} = \frac{1}{2}M v_x^2 + \frac{1}{2}\cdot\frac{2}{5}M\,\frac{v_x^2\,R^2}{R^2} =\]
\[\frac{1}{2}M v_x^2 + \frac{1}{5}M v_x^2 = \frac{7}{10}M v_x^2\] |
Simplify the expression for the sphere by canceling \(R^2\) and combining like terms. |
4 | \[K_{cylinder} = \frac{1}{2}M v_x^2 + \frac{1}{2}\left(\frac{1}{2}MR^2\right)\left(\frac{v_x}{R}\right)^2\] | Substitute the moment of inertia for a solid cylinder into the same kinetic energy formula. |
5 | \[K_{cylinder} = \frac{1}{2}M v_x^2 + \frac{1}{2}\cdot\frac{1}{2}M\,\frac{v_x^2\,R^2}{R^2} = \]
\[\frac{1}{2}M v_x^2 + \frac{1}{4}M v_x^2 = \frac{3}{4}M v_x^2\] |
Simplify the cylinder’s kinetic energy expression similarly by canceling \(R^2\) and adding the terms. |
6 | \[\frac{7}{10}M v_x^2 < \frac{3}{4}M v_x^2\] | Compare the two results: \(\frac{7}{10}=0.7\) while \(\frac{3}{4}=0.75\); thus, the sphere has less total kinetic energy than the cylinder when \(v_x\) is the same. |
7 | \[\boxed{(a)}\] | Conclude that the total kinetic energy of the solid sphere is less than that of the solid cylinder. |
Incorrect Options Explained: Option (b) is incorrect because the differing moments of inertia yield different rotational energies. Option (c) is incorrect as the sphere’s lower moment of inertia results in a smaller rotational energy contribution. Option (d) is incorrect since the provided information is sufficient to compare the energies.
Just ask: "Help me solve this problem."
A wheel of moment of inertia of \( 5.00 \) \( \text{kg} \cdot \text{m}^2 \) starts from rest and accelerates under a constant torque of \( 3.00 \) \( \text{N} \cdot \text{m} \) for \( 8.0 \) \( \text{s} \). What is the wheel’s rotational kinetic energy at the end of \( 8.0 \) \( \text{s} \)?
A windmill blade with a rotational inertia of \( 6.0 \) \( \text{kg} \cdot \text{m}^2 \) has an initial angular velocity of \( 8 \) \( \text{rad/s} \) in the clockwise direction. It is then given an angular acceleration of \( 4 \) \( \text{rad/s}^2 \) in the clockwise direction for \( 10 \) seconds. What is the change in rotational kinetic energy of the blade over this time interval?
A man with mass \( m \) is standing on a rotating platform in a science museum. The platform can be approximated as a uniform disk of radius \( R \) that rotates without friction at a constant angular velocity \( \omega \).
Two students are discussing what the man should do if he wishes to change the angular velocity of the platform.
Student A says that the man should run towards the center of the platform, because this will decrease the moment of inertia of the man-platform system. Since \( L \propto I \), the angular momentum will decrease proportionately and the platform will slow down.
Student B says that since the platform is rotating counterclockwise, the man should run in a clockwise direction to slow the platform down. His feet will exert a frictional torque on the platform, which will cause an angular acceleration of the man-platform system.
Explain what is correct and incorrect about each students statement if anything.
Young David experimented with slings before tackling Goliath. He found that he could develop an angular speed of \( 8.0 \) \( \text{rev/s} \) in a sling \( 0.60 \) \( \text{m} \) long. If he increased the length to \( 0.90 \) \( \text{m} \), he could revolve the sling only \( 6.0 \) times per second.
Two masses, \( m_y = 32 \) \( \text{kg} \) and \( m_z = 38 \) \( \text{kg} \), are connected by a rope that hangs over a pulley. The pulley is a uniform cylinder of radius \( R = 0.311 \) \( \text{m} \) and mass \( 3.1 \) \( \text{kg} \). Initially, \( m_y \) is on the ground and \( m_z \) rests \( 2.5 \) \( \text{m} \) above the ground.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.