AP Physics

Unit 6 - Rotational Motion

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

# Part (a): Solving Using Conservation of Energy

Step Derivation/Formula Reasoning
1 [katex] U_i + K_i = U_f + K_f [/katex] The total mechanical energy (kinetic + potential) at the initial state equals the total mechanical energy at the final state due to conservation of energy.
2 [katex] U_i = m_g \cdot g \cdot h [/katex] Initial potential energy is due to [katex] m_g [/katex] being at a height [katex] h [/katex] from the ground. [katex] m_y [/katex] is on the ground, so its potential energy is zero.
3 [katex] U_i = 38 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 2.5 \, \text{m} [/katex] Calculate the numerical value of [katex] U_i [/katex]. [katex] g [/katex] (acceleration due to gravity) is 9.8 m/s² and [katex] h [/katex] is 2.5 m.
4 [katex] U_i = 931 \, \text{J} [/katex] Multiplying the values provides the initial potential energy.
5 [katex] K_i = 0 [/katex] Initially, the system is at rest so the initial kinetic energy is zero.
6 [katex] K_f = \frac{1}{2}(m_y + m_g + m_p) v^2 [/katex] Final kinetic energy calculated as the sum of the kinetic energies of [katex] m_g [/katex], [katex] m_y [/katex] and the pulley. [katex] m_p [/katex] is the mass of the pulley. The pulley contributes translational kinetic energy due to its mass.
7 [katex] U_f = 0 [/katex] At the final state, [katex] m_g [/katex] is on the ground, so its potential energy is zero.
8 [katex] 931 \, \text{J} = \frac{1}{2} (32 \, \text{kg} + 38 \, \text{kg} + 3.1 \, \text{kg}) v^2 [/katex] Use [katex] U_i + K_i = U_f + K_f [/katex] and solve for [katex] v [/katex].
9 [katex] v = \sqrt{\frac{2 \times 931 \, \text{J}}{73.1 \, \text{kg}}} [/katex] Simplify the equation to solve for [katex] v [/katex].
10 [katex] v = \sqrt{25.48 \, \text{m}^2/\text{s}^2} [/katex] Calculate the value under the square root.
11 [katex] v = 5.05 \, \text{m/s} [/katex] The final velocity of [katex] m_g [/katex] just before it strikes the ground.

# Part (b): Solving Using Forces, Torque, and Kinematics

Step Derivation/Formula Reasoning
1 [katex] F = m \cdot a [/katex] Newton’s second law, the net force applied on the system causes acceleration.
2 [katex] F_{my} – F_{mg} = (m_y + m_g + m_p) \cdot a [/katex] Forces due to weights of [katex] m_y [/katex] and [katex] m_g [/katex], including the pulley’s inertia, where [katex] F_{my} = m_y \cdot g [/katex] and [katex] F_{mg} = m_g \cdot g [/katex].
3 [katex] T = \frac{m_g g – m_y g}{1 + \frac{m_p}{m_y + m_g}} [/katex] Balance the forces taking into account the pulley rotation effect, where [katex] T [/katex] is the net torque and [katex] m_p [/katex] is moment of inertia derived as [katex] \frac{1}{2} m_p R^2 [/katex] assuming a uniform cylinder.
4 [katex] a = \frac{m_g g – m_y g}{m_y + m_g + \frac{1}{2} m_p} [/katex] Solving the earlier equation for [katex] a [/katex], the acceleration of the system, where [katex] \frac{1}{2} m_p [/katex] comes from dividing the pulley’s moment of inertia by [katex] R^2 [/katex].
5 [katex] v_f^2 = 2 \cdot a \cdot 2.5 \, \text{m} [/katex] Use kinematic equation for final velocity, incorporating the calculated acceleration and distance fallen, which is 2.5 m.
6 [katex] v_f = \sqrt{2 \cdot a \cdot 2.5 \, \text{m}} [/katex] Solve for final velocity using the value for [katex] a [/katex].
7 Approximate numerical calculation similar to Part (a) The velocity is essentially the same result as obtained from energy conservation, demonstrating the physics consistency.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. [katex] v = 5.05 \, \text{m/s} [/katex]
  2. [katex] v = 5.05 \, \text{m/s} [/katex]. The velocity is essentially the same result as obtained from energy conservation, demonstrating the physics consistency.

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.