AP Physics

Unit 6 - Rotational Motion

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part (a): Energy Method

Step Derivation/Formula Reasoning
1 \[ U_i = m_z g (2.5) + m_y g (0) \] Initial gravitational potential energy is only from \(m_z\) at a height of 2.5 m since \(m_y\) is on the ground.
2 \[ U_f = m_z g (0) + m_y g (2.5) \] Final gravitational potential energy has \(m_y\) raised 2.5 m while \(m_z\) reaches the ground.
3 \[ \Delta U = U_f – U_i = (m_y – m_z)g (2.5) \] The change in potential energy is the difference between the final and initial energies. Since \(m_y < m_z\) the result is negative, indicating energy conversion to kinetic energy.
4 \[ KE_{\text{total}} = \frac{1}{2}(m_z+m_y)v^2 + \frac{1}{2}I\omega^2 \] The total kinetic energy is the sum of the translational kinetic energies of both masses and the rotational kinetic energy of the pulley.
5 \[ I = \frac{1}{2}MR^2 \quad \text{and} \quad \omega = \frac{v}{R} \] For a uniform cylinder, the moment of inertia is \(\frac{1}{2}MR^2\), and the no-slip condition gives \(\omega = v/R\).
6 \[ KE_{\text{pulley}} = \frac{1}{2}\left(\frac{1}{2}MR^2\right)\left(\frac{v}{R}\right)^2 = \frac{1}{4}Mv^2 \] This expresses the pulley’s rotational kinetic energy in terms of \(v\).
7 \[ (m_z-m_y)g(2.5) = \frac{1}{2}(m_z+m_y)v^2 + \frac{1}{4}Mv^2 \] Conservation of energy requires the loss in gravitational potential energy to equal the gain in kinetic energy.
8 \[ v^2 = \frac{(m_z-m_y)g(2.5)}{\frac{1}{2}(m_z+m_y) + \frac{1}{4}M} \] Algebraically solving for \(v^2\) isolates the speed in terms of the given masses, gravity, and pulley mass.
9 \[ v = \sqrt{\frac{(38-32)(9.8)(2.5)}{\frac{1}{2}(32+38) + \frac{1}{4}(3.1)}} \] Substitute \(m_z=38\) kg, \(m_y=32\) kg, and \(M=3.1\) kg. The numerator is \(6\cdot9.8\cdot2.5=147\) and the denominator is \(35+0.775=35.775\).
10 \[ v \approx \sqrt{\frac{147}{35.775}} \approx \sqrt{4.107} \approx 2.03 \text{ m/s} \] Taking the square root gives the speed of \(m_z\) just before impact.
11 \[ \boxed{v = 2.03 \text{ m/s}} \] This is the final answer using energy conservation.

Part (b): Forces & Kinematics

Step Derivation/Formula Reasoning
1 \[ m_zg – T_z = m_za \] For the falling mass \(m_z\), the net force is its weight minus the tension \(T_z\).
2 \[ T_y – m_yg = m_ya \] For the rising mass \(m_y\), the net force is the tension \(T_y\) minus its weight.
3 \[ (T_z – T_y)R = I\alpha \] The difference in tension produces a net torque on the pulley. With \(\alpha = \frac{a}{R}\) (no slip), this relates linear acceleration to angular acceleration.
4 \[ I = \frac{1}{2}MR^2 \quad \text{and} \quad \alpha = \frac{a}{R} \] Substitute the moment of inertia for a uniform cylinder and express \(\alpha\) in terms of \(a\).
5 \[ T_z – T_y = \frac{1}{2}Ma \] Simplify the torque equation using the expression for \(I\): \((T_z-T_y)R = \frac{1}{2}MR^2\cdot\frac{a}{R}\) leads to this equation.
6 \[ T_z = m_zg – m_za \quad \text{and} \quad T_y = m_yg + m_ya \] Express tensions from the force equations for each mass.
7 \[ (m_z-g – m_z\,a) – (m_yg + m_ya) = (m_z-m_y)g – (m_z+m_y)a = \frac{1}{2}Ma \] Subtracting the two tension expressions gives a relation between \(a\) and the masses.
8 \[ a = \frac{(m_z-m_y)g}{(m_z+m_y)+\frac{1}{2}M} \] Rearrange the equation to solve for the linear acceleration \(a\).
9 \[ a = \frac{(38-32)\,9.8}{(38+32)+\frac{1}{2}(3.1)} = \frac{6\cdot9.8}{70+1.55} \] Substitute \(m_z=38\) kg, \(m_y=32\) kg, and \(M=3.1\) kg. The denominator becomes \(70+1.55=71.55\) and the numerator is \(58.8\).
10 \[ a \approx \frac{58.8}{71.55} \approx 0.821 \text{ m/s}^2 \] This yields the acceleration of the masses.
11 \[ v^2 = 2a\Delta x \quad \text{with} \quad \Delta x = 2.5 \text{ m} \] Use the kinematic equation for constant acceleration, where \(\Delta x\) is the distance \(m_z\) falls.
12 \[ v = \sqrt{2(0.821)(2.5)} \approx \sqrt{4.105} \approx 2.03 \text{ m/s} \] Taking the square root gives the final speed of \(m_z\), which verifies the answer from part (a).
13 \[ \boxed{v = 2.03 \text{ m/s}} \] This confirms the speed obtained using the forces, torque, and kinematics method.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

\(2.03 \text{ m/s}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.