AP Physics

Unit 6 - Rotational Motion

Advanced

Mathematical

MCQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 \[ K_{\text{trans}} = \frac{1}{2} M_{\text{tot}} v^2 \] All three wagons have the same total mass and are accelerated to the same speed, so the translational kinetic energy is identical for each.
2 \[ K_{\text{rot}} = \frac{1}{2} I \omega^2 \quad \text{with} \quad \omega = \frac{v}{R} \] This is the rotational kinetic energy for a wheel rolling without slipping.
3 \[ I_{\text{disk}} = \frac{1}{2} M_{w} R^2 \quad \Rightarrow \quad K_{\text{rot,disk}} = \frac{1}{2}\left(\frac{1}{2} M_{w} R^2\right)\left(\frac{v}{R}\right)^2 = \frac{1}{4} M_{w} v^2 \] For a solid disk wheel (used in Wagons A and B), the moment of inertia is substituted to find its rotational kinetic energy.
4 \[ I_{\text{hoop}} = M_{w} R^2 \quad \Rightarrow \quad K_{\text{rot,hoop}} = \frac{1}{2}\left(M_{w} R^2\right)\left(\frac{v}{R}\right)^2 = \frac{1}{2} M_{w} v^2 \] For a hollow hoop wheel (used in Wagon C), the moment of inertia is larger, leading to greater rotational energy.
5 \[ K_{\text{total, wheel}} = K_{\text{trans, wheel}} + K_{\text{rot}} = \frac{1}{2} M_{w} v^2 + K_{\text{rot}} \] Each wheel has translational kinetic energy (as it moves with the wagon) plus its rotational kinetic energy.
6 For a disk:
\[ K_{\text{total, disk}} = \frac{1}{2} M_{w} v^2 + \frac{1}{4} M_{w} v^2 = \frac{3}{4} M_{w} v^2 \]
This is the effective energy per disk wheel. If the wheel’s mass were a simple point mass, it would only have \(\frac{1}{2}M_{w}v^2\); thus, the extra energy due to rotation is \(\Delta K_{\text{disk}} = \frac{3}{4} M_{w} v^2 – \frac{1}{2} M_{w} v^2 = \frac{1}{4} M_{w} v^2\).
7 For a hoop:
\[ K_{\text{total, hoop}} = \frac{1}{2} M_{w} v^2 + \frac{1}{2} M_{w} v^2 = M_{w} v^2 \]
Similarly, the extra energy due to rotation for a hoop is \(\Delta K_{\text{hoop}} = M_{w} v^2 – \frac{1}{2} M_{w} v^2 = \frac{1}{2} M_{w} v^2\), which is larger than that for a disk of the same mass.
8 Wagon A (disk, \(M_{w}=0.5\,\text{kg}\)):
\[ \Delta K_{A} = 4\left(\frac{1}{4}\times 0.5\, v^2\right) = 4(0.125\, v^2) = 0.5\, v^2 \]Wagon B (disk, \(M_{w}=0.2\,\text{kg}\)):
\[ \Delta K_{B} = 4\left(\frac{1}{4}\times 0.2\, v^2\right) = 4(0.05\, v^2) = 0.2\, v^2 \]Wagon C (hoop, \(M_{w}=0.2\,\text{kg}\)):
\[ \Delta K_{C} = 4\left(\frac{1}{2}\times 0.2\, v^2\right) = 4(0.1\, v^2) = 0.4\, v^2 \]
Each wagon has four wheels. The extra energy due to wheel rotation is calculated by multiplying the additional energy per wheel by four.
9 With \(v = 10\,\text{m/s}\) (\(v^2 = 100\)):
\[ \Delta K_{A} = 0.5 \times 100 = 50\, \text{J} \]
\[ \Delta K_{B} = 0.2 \times 100 = 20\, \text{J} \]
\[ \Delta K_{C} = 0.4 \times 100 = 40\, \text{J} \]
Substitute the final speed into each expression to obtain the numerical extra energy that must be supplied to accelerate the wheels.
10 \[\boxed{\text{Wagon A}}\] Since the translational energy is the same for all wagons, the wagon with the greatest extra wheel energy (50 J) requires the most energy input. Therefore, Wagon A requires the most energy.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.