0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[ K_{\text{trans}} = \frac{1}{2} M_{\text{tot}} v^2 \] | All three wagons have the same total mass and are accelerated to the same speed, so the translational kinetic energy is identical for each. |
2 | \[ K_{\text{rot}} = \frac{1}{2} I \omega^2 \quad \text{with} \quad \omega = \frac{v}{R} \] | This is the rotational kinetic energy for a wheel rolling without slipping. |
3 | \[ I_{\text{disk}} = \frac{1}{2} M_{w} R^2 \quad \Rightarrow \quad K_{\text{rot,disk}} = \frac{1}{2}\left(\frac{1}{2} M_{w} R^2\right)\left(\frac{v}{R}\right)^2 = \frac{1}{4} M_{w} v^2 \] | For a solid disk wheel (used in Wagons A and B), the moment of inertia is substituted to find its rotational kinetic energy. |
4 | \[ I_{\text{hoop}} = M_{w} R^2 \quad \Rightarrow \quad K_{\text{rot,hoop}} = \frac{1}{2}\left(M_{w} R^2\right)\left(\frac{v}{R}\right)^2 = \frac{1}{2} M_{w} v^2 \] | For a hollow hoop wheel (used in Wagon C), the moment of inertia is larger, leading to greater rotational energy. |
5 | \[ K_{\text{total, wheel}} = K_{\text{trans, wheel}} + K_{\text{rot}} = \frac{1}{2} M_{w} v^2 + K_{\text{rot}} \] | Each wheel has translational kinetic energy (as it moves with the wagon) plus its rotational kinetic energy. |
6 | For a disk: \[ K_{\text{total, disk}} = \frac{1}{2} M_{w} v^2 + \frac{1}{4} M_{w} v^2 = \frac{3}{4} M_{w} v^2 \] |
This is the effective energy per disk wheel. If the wheel’s mass were a simple point mass, it would only have \(\frac{1}{2}M_{w}v^2\); thus, the extra energy due to rotation is \(\Delta K_{\text{disk}} = \frac{3}{4} M_{w} v^2 – \frac{1}{2} M_{w} v^2 = \frac{1}{4} M_{w} v^2\). |
7 | For a hoop: \[ K_{\text{total, hoop}} = \frac{1}{2} M_{w} v^2 + \frac{1}{2} M_{w} v^2 = M_{w} v^2 \] |
Similarly, the extra energy due to rotation for a hoop is \(\Delta K_{\text{hoop}} = M_{w} v^2 – \frac{1}{2} M_{w} v^2 = \frac{1}{2} M_{w} v^2\), which is larger than that for a disk of the same mass. |
8 | Wagon A (disk, \(M_{w}=0.5\,\text{kg}\)): \[ \Delta K_{A} = 4\left(\frac{1}{4}\times 0.5\, v^2\right) = 4(0.125\, v^2) = 0.5\, v^2 \]Wagon B (disk, \(M_{w}=0.2\,\text{kg}\)): \[ \Delta K_{B} = 4\left(\frac{1}{4}\times 0.2\, v^2\right) = 4(0.05\, v^2) = 0.2\, v^2 \]Wagon C (hoop, \(M_{w}=0.2\,\text{kg}\)): \[ \Delta K_{C} = 4\left(\frac{1}{2}\times 0.2\, v^2\right) = 4(0.1\, v^2) = 0.4\, v^2 \] |
Each wagon has four wheels. The extra energy due to wheel rotation is calculated by multiplying the additional energy per wheel by four. |
9 | With \(v = 10\,\text{m/s}\) (\(v^2 = 100\)): \[ \Delta K_{A} = 0.5 \times 100 = 50\, \text{J} \] \[ \Delta K_{B} = 0.2 \times 100 = 20\, \text{J} \] \[ \Delta K_{C} = 0.4 \times 100 = 40\, \text{J} \] |
Substitute the final speed into each expression to obtain the numerical extra energy that must be supplied to accelerate the wheels. |
10 | \[\boxed{\text{Wagon A}}\] | Since the translational energy is the same for all wagons, the wagon with the greatest extra wheel energy (50 J) requires the most energy input. Therefore, Wagon A requires the most energy. |
Just ask: "Help me solve this problem."
A seesaw is balanced on a fulcrum, with a boy of mass [katex] M_1 [/katex] sitting on one end and a girl of mass [katex] M_2 [/katex] sitting on the other end. The seesaw is a uniform plank of length [katex]L[/katex] and mass [katex] M[/katex]. The fulcrum is located at the midpoint of the plank. Does [katex] M_1 = M_2 [/katex]. Justify your working.
A 150-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope.
What constant force must be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.500 rev/s in 2.00 s?
Note: [katex] I_\text{disk} = \frac{1}{2}mr^2 [/katex]
Wheels \( A \) and \( B \) are connected by a moving belt and are both free to rotate about their centers. The belt does not slip on the wheels. The radius of Wheel \( B \) is twice the radius of Wheel \( A \). Wheel \( A \) has constant angular speed \( \omega_A \) and Wheel \( B \) has constant angular speed \( \omega_B \). Which of the following correctly relates \( \omega_A \) and \( \omega_B \)?
A high-speed flywheel in a motor is spinning at \( 500 \) \( \text{rpm} \) when a power failure suddenly occurs. The flywheel has a mass of \( 40 \) \( \text{kg} \) and a diameter of \( 75 \) \( \text{cm} \). The power is off for \( 30 \) \( \text{s} \) and during this time the flywheel slows due to friction in its axle bearings. During this time the flywheel makes \( 200 \) complete revolutions.
A solid sphere of mass [katex] 1.5 \, \text{kg} [/katex] and radius [katex] 15 \, \text{cm} [/katex] rolls without slipping down a [katex] 35^\circ[/katex] incline that is [katex] 7 \, \text{m} [/katex] long. Assume it started from rest. The moment of inertia of a sphere is [katex] I= \frac{2}{5}MR^2 [/katex].
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.