for free to use all UBQ features

The figure shows a container filled with water to a depth \( d \). The container has a hole a distance \( y \) above its bottom, allowing water to exit with an initially horizontal velocity. Which of the following correctly predicts and explains how the speed of the water as it exits the hole would change if the distance \( y \) above the bottom of the container increased?
A block is given a brief push so that it slides up a ramp. After the block reaches its highest point, it slides back down, but the magnitude of its acceleration is less on the descent than on the ascent. Why?
The occupants of a car traveling at a speed of \( 30 \) \( \text{m/s} \) note that on a particular part of a road their apparent weight is \( 15\% \) higher than their weight when driving on a flat road.
A lighter car and a heavier truck, each traveling to the right with the same speed [katex] v [/katex] hit their brakes. The retarding frictional force F on both cars turns out to be constant and the same. After both vehicles travel a distance [katex] D [/katex] (and both are still moving), which of the following statements is true?
Two objects attract each other gravitationally with a force of \( 2.5 \times 10^{-10} \) \( \text{N} \) when they are \( 0.25 \) \( \text{m} \) apart. Their total mass is \( 4.00 \) \( \text{kg} \). Find their individual masses.
Only \( 1 \) non-zero force acts on an object. Can the object have \( 0 \) acceleration? Can it have \( 0 \) velocity? Explain.

From the figure above, determine which characteristic fits this collision best.
A skydiver reaches a terminal velocity of \(55.0\, \mathrm{m/s}\). At terminal velocity, the skydiver no longer accelerates. The mass of the skydiver and her equipment is \(87.0\, \mathrm{kg}\). What is the force of friction acting on her?

Alcohol has a specific gravity of \( 0.79 \). If a barometer consisting of an open-ended tube placed in a dish of alcohol is used at sea level, to what height in the tube will the alcohol rise?
A car is going through a dip in the road whose curvature approximates a circle of radius \( 200 \) \( \text{m} \). At what velocity will the occupants of the car appear to weigh \( 20\% \) more than their normal weight \( (1.2\,W) \)?
Seo-Jun throws a ball to her friend Zuri. The ball leaves Seo-Jun’s hand from a height \( h = 1.5 \) \( \text{m} \) above the ground with an initial speed \( \vec{v}_{s,0} = 12 \) \( \text{m/s} \) at an angle of \( \theta = 25^\circ \) with respect to the horizontal. Zuri catches the ball at a height of \( h = 1.5 \) \( \text{m} \) above the ground.
After catching the ball, Zuri throws it back to Seo-Jun. The ball leaves Zuri’s hand from a height \( h = 1.5 \) \( \text{m} \) above the ground. The ball is moving with a speed of \( 15 \) \( \text{m/s} \) when it reaches a maximum height of \( 5.8 \) \( \text{m} \) above the ground.
At what height \( h’ \) above the ground will the ball be when the return throw reaches Seo-Jun?
Two masses, \( m_y = 32 \) \( \text{kg} \) and \( m_z = 38 \) \( \text{kg} \), are connected by a rope that hangs over a pulley. The pulley is a uniform cylinder of radius \( R = 0.311 \) \( \text{m} \) and mass \( 3.1 \) \( \text{kg} \). Initially, \( m_y \) is on the ground and \( m_z \) rests \( 2.5 \) \( \text{m} \) above the ground.
A \(5\)-meter long ladder is leaning against a wall, with the bottom of the ladder \(3\) meters from the wall. The ladder is uniform and has a mass of \(20 \, \text{kg}\). A person of mass \(80 \, \text{kg}\) is standing on the ladder at a distance of \(4\) meters from the bottom of the ladder. What is the force exerted by the wall on the ladder?
A baseball rolls off a 0.70 m high desk and strikes the floor 0.25 m away from the base of the desk. How fast was the ball rolling?
Wheels \( A \) and \( B \) are connected by a moving belt and are both free to rotate about their centers. The belt does not slip on the wheels. The radius of Wheel \( B \) is twice the radius of Wheel \( A \). Wheel \( A \) has constant angular speed \( \omega_A \) and Wheel \( B \) has constant angular speed \( \omega_B \). Which of the following correctly relates \( \omega_A \) and \( \omega_B \)?
Consider a neutron star with a mass equal to the sun, a radius of 10 km, and a rotation period of 1.0 s. What is the radius of a geosynchronous orbit about the neutron star? The mass of the sun can be found in the formula sheet above.
A baseball is tossed from street level by a student straight up at a speed of \(25.3 \text{ m/s}\). After reaching maximum height, it is caught by another student on the roof of a building, \(17.4 \text{ m}\) above the street. How long did this take?
A \( 1000 \) \( \text{kg} \) car is traveling east at \( 20 \) \( \text{m/s} \) when it collides perfectly inelastically with a northbound \( 2000 \) \( \text{kg} \) car traveling at \( 15 \) \( \text{m/s} \). If the coefficient of kinetic friction is \( 0.9 \), how far, and at what angle do the two cars skid before coming to a stop?
A horizontal uniform meter stick of mass 0.2 kg is supported at its midpoint by a pivot point. A mass of 0.1 kg is attached to the left end of the meter stick, and another mass of 0.15 kg is attached to the right end of the meter stick. The meter stick is free to rotate in the horizontal plane around the pivot point. What is the tension in the string supporting the left end of the meter stick?
It takes \(4 \, \text{s}\) for an individual to push a \(70 \, \text{kg}\) box up a \(5 \, \text{m}\) long, \(12^\circ\) ramp. The box starts from rest and achieves a speed of \(2.5 \, \text{m/s}\) at the top. Friction does \(350 \, \text{J}\) of work during its ascent. Calculate the power output of the individual pushing the box.
A car traveling to the right with a speed \( v \) brakes to a stop in a distance \( d \). What is the work done on the car by the frictional force \( F \)? (Assume that the frictional force is constant)
A man with mass \( m \) is standing on a rotating platform in a science museum. The platform can be approximated as a uniform disk of radius \( R \) that rotates without friction at a constant angular velocity \( \omega \). Two students are discussing what the man should do if he wishes to change the angular velocity of the platform.
Student A says that the man should run towards the center of the platform, because this will decrease the moment of inertia of the man-platform system. Since \( L \propto I \), the angular momentum will decrease proportionately and the platform will slow down.
Student B says that since the platform is rotating counterclockwise, the man should run in a clockwise direction to slow the platform down. His feet will exert a frictional torque on the platform, which will cause an angular acceleration of the man-platform system.
Explain what is correct and incorrect about each students statement if anything.
A simple Atwood’s machine remains motionless when equal masses \(M\) are placed on each end of the chord. When a small mass \(m\) is added to one side, the masses have an acceleration \(a\). What is \(M\)? You may neglect friction and the mass of the cord and pulley.

The motion of a particle is described in the velocity vs. time graph shown above. Over the nine-second interval shown, we can say that the speed of the particle…
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.