for free to use all UBQ features
The steepest street in the world is Baldwin Street in Dunedin, New Zealand. It has an inclination angle of \( 38.0^\circ \) with respect to the horizontal. Suppose a wooden crate with a mass of \( 25.0 \) \( \text{kg} \) is placed on Baldwin Street. An additional force of \( 59 \) \( \text{N} \) must be applied to the crate perpendicular to the pavement in order to hold the crate in place. If the coefficient of static friction between the crate and the pavement is \( 0.599 \), what is the magnitude of the frictional force?
A circus cannon fires an acrobat into the air at an angle of \( 45^\circ \) above the horizontal, and the acrobat reaches a maximum height \( y \) above her original launch height. The cannon is now aimed so that it fires straight up, at an identical speed, into the air at an angle of \( 90^\circ \) to the horizontal. In terms of \( y \), what is the acrobat’s new maximum height?
Friction provides the force needed for a car to travel around a flat, circular race track. Answer the following:
A geologist suspects that her rock specimen is hollow, so she weighs the specimen in both air and water. When completely submerged, the rock weighs twice as much in air as it does in water.
At time \( t = 0 \), a disk starts from rest and begins spinning about its center with a constant angular acceleration of magnitude \( \alpha \). At time \( t_f \), the disk has angular speed \( \omega_f \). Which of the following expressions correctly compares the final angular displacement \( \theta_f \) of the disk at time \( t_f \) to the angular displacement \( \theta_{1/2} \) at time \( \frac{t_f}{2} \)?
A race car traveling at a constant speed of \( 50 \) \( \text{m/s} \) drives around a circular track that is \( 500 \) \( \text{m} \) in diameter. What is the magnitude of the acceleration of the car?

A point on the edge of a disk rotates around the center of the disk with an initial angular velocity of 3 rad/s clockwise. The graph shows the point’s angular acceleration as a function of time. The positive direction is considered to be counterclockwise. All frictional forces are considered to be negligible.
A ball is dropped off a high cliff, and \( 2 \) \( \text{s} \) later another ball is thrown vertically downward with an initial speed of \( 30 \) \( \text{m/s} \). How long will it take the second ball to overtake the first?
Two masses, \( m_y = 32 \) \( \text{kg} \) and \( m_z = 38 \) \( \text{kg} \), are connected by a rope that hangs over a pulley. The pulley is a uniform cylinder of radius \( R = 0.311 \) \( \text{m} \) and mass \( 3.1 \) \( \text{kg} \). Initially, \( m_y \) is on the ground and \( m_z \) rests \( 2.5 \) \( \text{m} \) above the ground.
A speed skater goes around a turn that has a radius of \(31 \, \text{m}\). The skater has a speed of \(14 \, \text{m/s}\) and experiences a centripetal force of \(460 \, \text{N}\). What is the mass of the skater?
A baseball is hit high and far across a field. Which of the following statements is true? At the highest point:
Which of the following best explains why astronauts experience weightlessness while orbiting the earth?
Why do pilots sometimes black out while pulling out at the bottom of a dive?
A rocket is sent to shoot down an invading spacecraft that is hovering at an altitude of \( 1500 \, \text{m} \). The rocket is launched with an initial velocity of \( 180 \, \text{m/s} \). Find the following:
A car travels at a constant speed around a circular track whose radius is \(2.6 \, \text{km}\). The car goes once around the track in \(360 \, \text{s}\). What is the magnitude of the centripetal acceleration of the car?
A skier is accelerating down a \( 30.0^{\circ} \) hill at \( 3.80 \) \( \text{m/s}^2 \).
An object is thrown straight upward at 64 m/s.
A person holds a book at rest a few feet above a table. The person then lowers the book at a slow constant speed and places it on the table. Which of the following accurately describes the change in the total mechanical energy of the Earth–book system?
An airplane of weight \( W \) is flying horizontally with constant velocity. The total forward thrust of the engines is \( 3W \). What is the magnitude of the force of air on the plane in terms of \( W \)?
An eagle is flying horizontally at \(6 \, \text{m/s}\) with a fish in its claws. It accidentally drops the fish.
A golf club exerts an average horizontal force of \(1000 \, \text{N}\) on a \(0.045 \, \text{kg}\) golf ball that is initially at rest on the tee. The club is in contact with the ball for \(1.8 \, \text{milliseconds}\). What is the speed of the golf ball just as it leaves the tee?
The magnitude of the gravitational field on the surface of a new planet is \(20 \, \text{N/kg}\). The planet’s mass is half the mass of Earth. The radius of Earth is \(6400 \, \text{km}\). What is the radius of the new planet?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.