for free to use all UBQ features
The displacement \(x\) of an object moving in one dimension is shown above as a function of time \(t\). The velocity of this object must be
Suppose you place a ball in the middle of a wagon, and then accelerate the wagon forward. Describe the motion of the ball relative to the ground. Describe its motion relative to the wagon.
A skydiver reaches a terminal velocity of \(55.0\, \mathrm{m/s}\). At terminal velocity, the skydiver no longer accelerates. The mass of the skydiver and her equipment is \(87.0\, \mathrm{kg}\). What is the force of friction acting on her?
Two identical solid disks, each of mass \( M \) and radius \( R \), are welded together so that they touch at exactly one point on their rims. Determine the moment of inertia of the combined object about an axis that is perpendicular to the plane of the disks and passes through their point of contact. Hint: The moment of inertia of a solid disk about its center is \(\frac{1}{2} M R^{2}\).
When a skier skis down a hill, the normal force exerted on the skier by the hill is
A turntable rotates through \( 6 \) \( \text{rad} \) in \( 3 \) \( \text{s} \) as it accelerates uniformly from rest. What is its angular acceleration in \( \text{rad/s}^2 \)?
A body starting from rest moves along a straight line under the action of a constant force. After traveling a distance \( d \) the speed of the body is \( v \). The speed of the body when it has travelled a distance \( \dfrac{d}{2} \) from its initial position is
A truck of mass 3500 kg hits the back of a small car of mass 1400 kg. Which car exerted more force on the other and why?
A diver descends from a salvage ship to the ocean floor at a depth of \(35 \text{ m}\) below the surface. The density of ocean water is \(1.025 \times 10^3 \text{ kg/m}^3\).
A javelin thrower, of height \( 1.8 \) \( \text{m} \), throws a javelin with initial velocity of \( 26 \) \( \text{m s}^{-1} \) at \( 38^{\circ} \) to the horizontal. Calculate the time taken for the javelin to reach the ground from its maximum height. Give your answer in seconds and to an appropriate number of significant figures.
How does the speed \(v_1\) of a block \(m\) reaching the bottom of slide 1 compare with \(v_2\), the speed of a block \(2m\) reaching the end of slide 2? The blocks are released from the same height.
Which pair of quantities will always have the same magnitude if motion is in a straight line and in one direction?
A car with speed \( v \) and an identical car with speed \( 3v \) both travel the same circular section of an unbanked (flat) road. If the frictional force required to keep the faster car on the road without skidding is \( F \), then the frictional force required to keep the slower car on the road without skidding is

A light string is attached to a massive pulley of known rotational inertia \( I_P \), as shown in the figure. A student must determine the relationship between the torque exerted on the pulley and the change in the pulley’s angular velocity when the torque is applied for \( 2.0 \) \( \text{s} \). In addition to a stopwatch to measure the time interval, what two measurements could the student make in order to determine the relationship? Select two answers.
A brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it?
An object weighs \( 432 \) \( \text{N} \) on the surface of Earth. At a height of \( 3R_{\text{Earth}} \) above Earth’s surface, what is its weight?
A new car is tested on a 230-m-diameter track. If the car speeds up at a steady [katex] 1.4 \, m/s^2[/katex], how long after starting is the magnitude of its centripetal acceleration equal to the tangential acceleration?
A uniform, solid, \( 100 \) \( \text{kg} \) cylinder with a diameter of \( 1.0 \) \( \text{m} \) is mounted so it is free to rotate about a fixed, horizontal, frictionless axis that passes through the centers of its circular ends. A \( 10 \) \( \text{kg} \) block is hung from a very light, thin cord wrapped around the cylinder’s circumference. When the block is released, the cord unwinds and the block accelerates downward. What is the acceleration of the block?
Nancy is using a turkey baster (a kitchen tool with a rubber bulb on one end and a tube on the other) to collect juices from a roasting turkey. When she squeezes and then releases the rubber bulb, it creates suction with a pressure of \( 99{,}800 \) \( \text{Pa} \). This suction causes the turkey juice to rise \( 9 \) \( \text{cm} \) up the tube. Based on this information, what is the density of the turkey juice?
A spring launches a \(4 \, \text{kg}\) block across a frictionless horizontal surface. The block then ascends a \(30^\circ\) incline with a kinetic friction coefficient of \(\mu_k = 0.25\), stopping after \(55 \, \text{m}\) on the incline. If the spring constant is \(800 \, \text{N/m}\), find the initial compression of the spring. Disregard friction while in contact with the spring.
An object travels along a path shown above, with changing velocity as indicated by vectors \( A \) and \( B \). Which vector best represents the net acceleration of the object from time \( t_A \) to \( t_B \)?
A point \( P \) is subjected to three simultaneous forces of magnitudes \( F_A > F_B > F_C \). Point \( P \) is in equilibrium. Which of the following statements is not always true about the magnitudes of the forces?

In lacrosse, a typical throw is made by rotating the stick through an angle of roughly \(90^\circ\), then releasing the ball when the stick is vertical, as shown above. If the \(1 \, \text{meter}\) long stick is at rest when horizontal and the ball leaves the stick with a velocity of \(10 \, \text{m/s}\), what angular acceleration must the stick experience?

A \( 0.20 \) \( \text{kg} \) object moves along a straight line. The net force acting on the object varies with the object’s displacement as shown in the graph above. The object starts from rest at displacement \( x = 0 \) and time \( t = 0 \) and is displaced a distance of \( 20 \) \( \text{m} \). Determine each of the following.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.