to use all UBQ features!

Physics UBQ

Supercharge Your Learning with 1000+ AP Level Physics Problems
0%
Phy UBQ Count Message Here
Beginner
Mathematical
MCQ

An object is released from rest near the surface of a planet. The velocity of the object as a function of time is expressed in the following equation. \( v_y = (-3) \, \text{m/s}^2 \, t \) All frictional forces are considered to be negligible. What distance does the object fall \( 10 \) \( \text{s} \) after it is released from rest?

Intermediate
Mathematical
GQ

Determine the force needed to push a \( 150 \) \( \text{kg} \) body up a smooth \( 30^\circ \) incline with an acceleration of \( 6 \) \( \text{m/s}^2 \).

Advanced
Mathematical
MCQ

Students attach a thin strip of metal to a table so that the strip is horizontal in relation to the ground. A section of the strip hangs off the edge of the table. A mass is secured to the end of the hanging section of the strip and is then displaced so that the mass-strip system oscillates, as shown in the figure. Students make various measurements of the net force F exerted on the mass as a result of the force due to gravity and the normal force from the strip, the vertical position y of the mass above and below its equilibrium position y. and the period of oscillation T’ when the mass is displaced by different amplitudes A. Which of the following explanations is correct about the evidence required to conclude that the mass undergoes simple harmonic motion?

Intermediate
Mathematical
FRQ

An object is suspended from a spring scale first in air, then in water, as shown in the figure above. The spring scale reading in air is \( 17.8 \) \( \text{N} \), and the spring scale reading when the object is completely submerged in water is \( 16.2 \) \( \text{N} \). The density of water is \( 1000 \) \( \text{kg/m}^3 \).

Intermediate
Mathematical
GQ

A car travels at a constant speed around a circular track whose radius is \(2.6 \, \text{km}\). The car goes once around the track in \(360 \, \text{s}\). What is the magnitude of the centripetal acceleration of the car?

Intermediate
Conceptual
GQ

A 100-pound rock and a 1-pound metal arrow pointed downwards are dropped from height \( h \). Assuming there is no air resistance, which one hits the ground first and why?

Advanced
Mathematical
GQ

What is a man’s apparent weight at the equator if his weight is \(500 \, \text{N}\)? The Earth’s radius is \(6.37 \times 10^{6} \, \text{m}\).

Intermediate
Proportional Analysis
MCQ

Four systems are in rotational motion. Which of the following combinations of rotational inertia and angular speed for each of the systems corresponds to the greatest rotational kinetic energy?

System Rotational Inertia Angular Speed
A \( I_0 \) \( \omega_0 \)
B \( I_0 \) \( 4\, \omega_0 \)
C \( 2 I_0 \) \( 2\, \omega_0 \)
D \( 6 I_0 \) \( \omega_0 \)
Advanced
Mathematical
MCQ

The figure shows a person’s foot. In that figure, the Achilles tendon exerts a force of magnitude F = 720 N. What is the magnitude of the torque that this force produces about the ankle joint?

Advanced
Conceptual
MCQ

Two identical blocks are connected to the opposite ends of a compressed spring. The blocks initially slide together on a frictionless surface with velocity \( v \) to the right. The spring is then released by remote control. At some later instant, the left block is moving at \( \frac{v}{2} \) to the left, and the other block is moving to the right. What is the speed of the center of mass of the system at that instant?

Intermediate
Proportional Analysis
MCQ

Two balls are dropped from the roof of a building. One ball has twice as massive as the other and air resistance is negligible. Just before hitting the ground, the more massive ball has ball  ____ the kinetic energy of the less massive ball.

Advanced
Mathematical
GQ

A car is driving at \(25 \, \text{m/s}\) when a light turns red \(100 \, \text{m}\) ahead. The driver takes an unknown amount of time to react and hit the brakes, but manages to skid to a stop at the red light. If \(\mu_s = 0.9\) and \(\mu_k = 0.65\), what was the reaction time of the driver?

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Sign In to View Your Questions

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.