Supercharge UBQ with

0 attempts

0% avg

UBQ Credits

Verfied Explanation 0 likes
0
1. Minimum Velocity Needed to Hit the Spaceship:

The minimum velocity is the initial vertical velocity required to reach 1500 m under the influence of gravity.

Step Formula Derivation Reasoning
1.1 [katex]v_{\text{min}} = \sqrt{2gh}[/katex] The minimum velocity required, derived from the equation [katex]v^2 = v_0^2 + 2gh[/katex], where [katex]v_0[/katex] is initial velocity and [katex]v[/katex] is final velocity (0 at the top).
1. Time to Reach Maximum Height at 180 m/s:

This is the time taken for the rocket to reach its highest point, where its vertical velocity becomes zero.

Step Formula Derivation Reasoning
2.1 [katex]t = \frac{v_0}{g}[/katex] Time to reach maximum height, where [katex]v_0[/katex] is initial vertical velocity and [katex]g[/katex] is acceleration due to gravity.
1. Maximum Height Reached at 180 m/s:

The highest point the rocket reaches when launched vertically at 180 m/s.

Step Formula Derivation Reasoning
3.1 [katex]h = \frac{v_0^2}{2g}[/katex] Maximum height reached, derived from [katex]v^2 = v_0^2 – 2gh[/katex], with [katex]v = 0[/katex] at the maximum height.
1. Velocity and Time of Impact with the Spacecraft:

Assuming the rocket reaches the spacecraft, we calculate the time and velocity of impact.

Step Formula Derivation Reasoning
4.1 [katex]v = \sqrt{v_0^2 – 2gh}[/katex] Velocity at impact, derived from [katex]v^2 = v_0^2 – 2gh[/katex].
4.2 [katex]t = \frac{v_0 – v}{g}[/katex] Time of impact, calculated from [katex]v = v_0 – gt[/katex].

We will now calculate these values.

Here are the results:

1. Minimum Velocity Needed to Hit the Spaceship:
• [katex]v_{\text{min}} \approx 171.46 , \text{m/s}[/katex]
2. Time Taken to Reach Maximum Height at 180 m/s:
• [katex]t \approx 18.37 , \text{s}[/katex]
3. Maximum Height Reached at 180 m/s:
• [katex]h_{\text{max}} \approx 1653.06 , \text{m}[/katex]
4. Velocity and Time of Impact with the Spacecraft:
• Velocity at Impact: [katex]v \approx 54.77 , \text{m/s}[/katex]
• Time of Impact: [katex]t \approx 12.78 , \text{s}[/katex]

Need Help? Ask Phy To Explain This Problem

Phy can also check your working. Just snap a picture!

Phy Chat
Just Drag and Drop!

See how Others Did on this question | Coming Soon

1. Minimum Velocity Needed to Hit the Spaceship:
• [katex]v_{\text{min}} \approx 171.46 , \text{m/s}[/katex]
2. Time Taken to Reach Maximum Height at 180 m/s:
• [katex]t \approx 18.37 , \text{s}[/katex]
3. Maximum Height Reached at 180 m/s:
• [katex]h_{\text{max}} \approx 1653.06 , \text{m}[/katex]
4. Velocity and Time of Impact with the Spacecraft:
• Velocity at Impact: [katex]v \approx 54.77 , \text{m/s}[/katex]
• Time of Impact: [katex]t \approx 12.78 , \text{s}[/katex]

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Enjoying UBQ? Share the 🔗 with friends!

KinematicsForces
[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex][katex]F = ma[/katex]
[katex]v = v_i + at[/katex][katex]F_g = \frac{G m_1m_2}{r^2}[/katex]
[katex]a = \frac{\Delta v}{\Delta t}[/katex][katex]f = \mu N[/katex]
[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex]
Circular MotionEnergy
[katex]F_c = \frac{mv^2}{r}[/katex][katex]KE = \frac{1}{2} mv^2[/katex]
[katex]a_c = \frac{v^2}{r}[/katex][katex]PE = mgh[/katex]
[katex]KE_i + PE_i = KE_f + PE_f[/katex]
MomentumTorque and Rotations
[katex]p = m v[/katex][katex]\tau = r \cdot F \cdot \sin(\theta)[/katex]
[katex]J = \Delta p[/katex][katex]I = \sum mr^2[/katex]
[katex]p_i = p_f[/katex][katex]L = I \cdot \omega[/katex]
Simple Harmonic Motion
[katex]F = -k x[/katex]
[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex]
[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex]
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters.

1. Start with the given measurement: [katex]\text{5 km}[/katex]

2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

1. Some answers may be slightly off by 1% depending on rounding, etc.
2. Answers will use different values of gravity. Some answers use 9.81 m/s2, and other 10 m/s2 for calculations.
3. Variables are sometimes written differently from class to class. For example, sometime initial velocity [katex] v_i [/katex] is written as [katex] u [/katex]; sometimes [katex] \Delta x [/katex] is written as [katex] s [/katex].
4. Bookmark questions that you can’t solve so you can come back to them later.
5. Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

\$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro