New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

to use all UBQ features!

Physics UBQ

Supercharge Your Learning with 1000+ AP Level Physics Problems
0%
Phy UBQ Count Message Here
Intermediate
Conceptual
MCQ

Two blocks of ice, one five times as heavy as the other, are at rest on a frozen lake. A person then pushes each block the same distance \(d\). Ignore friction and assume that an equal force \(F\) is exerted on each block. Which of the following statements is true about the kinetic energy of the heavier block after the push?

Intermediate
Mathematical
GQ

Water at a gauge pressure of \( 3.8 \) \( \text{atm} \) at street level flows into an office building at a speed of \( 0.78 \) \( \text{m/s} \) through a pipe \( 5.0 \) \( \text{cm} \) in diameter. The pipe tapers down to \( 2.8 \) \( \text{cm} \) in diameter by the top floor, \( 16 \) \(\text{m} \) above, where the faucet has been left open. Calculate the flow velocity AND the gauge pressure in the pipe on the top floor. Assume no branch pipes and ignore viscosity.

Beginner
Mathematical
GQ

Two students push a \(1750\, \mathrm{kg}\) car with a force of \(758\, \mathrm{N}\) along a perfectly level road at a constant velocity of \(4.00\, \mathrm{m/s}\). Find the force of friction.

Advanced
Mathematical
FRQ

Refer to the diagram above and solve all equations in terms of \(R\), \(M\), \(k\), and constants.

Advanced
Proportional Analysis
MCQ

A block starts at rest on a frictionless inclined track which then turns into a circular loop of radius \( R \) and is vertical. In terms of \( R \) and constants, find the minimum height \( h \) above the bottom of the loop the block must start from so it makes it around the loop.

Advanced
Mathematical
FRQ

A uniform ladder of length \(L\) and weight \(W = 50 \, \text{N}\) rests against a smooth vertical wall. If the coefficient of static friction between the ladder and the ground is \(\mu = 0.4\).

Intermediate
Proportional Analysis
GQ

A \(4.0 \, \text{kg}\) block is moving at \(5.0 \, \text{m/s}\) along a horizontal frictionless surface toward an ideal spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of \(0.68 \, \text{m}\). What is the speed of the block when the spring is compressed to only one-half of the maximum distance?

Intermediate
Conceptual
MCQ

A solid sphere \( \left( I = \frac{2}{5}MR^2 \right) \) and a solid cylinder \( \left( I = \frac{1}{2}MR^2 \right) \), both uniform and of the same mass and radius, roll without slipping at the same forward speed. It is correct to say that the total kinetic energy of the solid sphere is

Intermediate
Mathematical
GQ

A 0.72-m-diameter solid sphere can be rotated about an axis through its center by a torque of 10.8 N·m which accelerates it uniformly from rest through a total of 160 revolutions in 15.0 s. What is the mass of the sphere?

Intermediate
Conceptual
MCQ

A platform is initially rotating on smooth ice with negligible friction, as shown above. A stationary disk is dropped directly onto the center of the platform. A short time later, the disk and platform rotate together at the same angular velocity, as shown at right in the figure. How does the angular momentum of only the platform change, if at all, after the disk drops? And what is the best justification.

Advanced
Conceptual
MCQ

Two blocks are on a horizontal, frictionless surface. Block \( A \) is moving with an initial velocity of \( v_0 \) toward block \( B \), which is stationary. The two blocks collide, stick together, and move off with a velocity of \( \frac{v_0}{3} \). Which block, if either, has the greater mass?

Intermediate
Mathematical
GQ

Two blocks, A and B, are connected by a light string that passes over a frictionless pulley. Block A, of mass \( 10 \) \( \text{kg} \), rests on a rough plane that makes an angle of \( 45^{\circ} \) with the horizontal, while block B, of mass \( 17 \) \( \text{kg} \), hangs vertically. Starting from rest, what is the minimum coefficient of static friction between block A and the plane required to keep the system in static equilibrium?

Beginner
Conceptual
MCQ

Water flowing in a horizontal pipe speeds up as it goes from a section with a large diameter to a section with a small diameter. Which of the following can explain why the speed of the water increases?

Advanced
Mathematical
GQ

A red car, initially at rest, travels east with an acceleration of \( 3.5 \, \text{m/s}^2 \). At the same time as the red car starts to move, a blue car is traveling west at \( 15 \, \text{m/s} \) and accelerating at \( 1.2 \, \text{m/s}^2 \). If they are \( 600 \, \text{m} \) apart the moment the red car starts to move and they are traveling towards each other, where and when will they meet?

Beginner
Conceptual
GQ

Why is it impossible to build a perpetual motion machine?

Intermediate
Mathematical
GQ

In \(3.0 \, \text{minutes}\), a ski lift raises \(10\) skiers at constant speed to a height of \(85 \, \text{m}\). The ski lift is \(55^\circ\) above the horizontal and the average mass of each skier is \(67.5 \, \text{kg}\). What is the average power provided by the tension in the cable pulling the lift?

Beginner
Conceptual
MCQ

How is acceleration defined?

Advanced
Mathematical
GQ

A Christmas ornament made from a thin hollow glass sphere hangs from a thin wire of negligible mass. It is observed to oscillates with a frequency of \( 2.50 \) \( \text{Hz} \) in a city where \( g = 9.80 \) \( \text{m/s}^2 \). What is the radius of the ornament? The moment of inertia of the ornament is given by \( I = \frac{5}{3} mr^2 \).

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Sign In to View Your Questions

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.