A solid titanium sphere of radius \( 0.35 \) \( \text{m} \) has a density \( 4500 \) \( \text{kg/m}^3 \). It is held suspended completely underwater by a cable. What is the tension in the cable?
A ladder at rest is leaning against a wall at an angle. Which of the following forces must have the same magnitude as the frictional force exerted on the ladder by the floor?
A small boat coasts at constant speed under a bridge. A heavy sack of sand is dropped from the bridge onto the boat. The speed of the boat will
A 2.0 kg ball on the end of a 0.65 m long string is moving in a vertical circle. At the bottom of the circle, its speed is 4.0 m/s. Find the tension in the string.
You are working out on a rowing machine. Each time you pull the rowing bar toward you, it moves a distance of \(1.25 \, \text{m}\) in a time of \(0.84 \, \text{s}\). The readout on the display indicates that the average power you are producing is \(76 \, \text{W}\). What is the magnitude of the force that you exert on the handle?
A vertical rope of negligible mass supports a block that weighs \(30 N\). The breaking strength of the rope is \( 50 N\). The largest acceleration that can be given to the block by pulling up on it with the rope without breaking the rope is most nearly

Three masses are attached to a \( 1.5 \, \text{m} \) long massless bar. Mass 1 is \( 2 \, \text{kg} \) and is attached to the far left side of the bar. Mass 2 is \( 4 \, \text{kg} \) and is attached to the far right side of the bar. Mass 3 is \( 4 \, \text{kg} \) and is attached to the middle of the bar. At what distance from the far left side of the bar can a string be attached to hold the bar up horizontally?
Two identical arrows, one with \( 2 \) times the speed of the other, are fired into a bale of hay. Assuming the hay exerts a constant “frictional” force on the arrows, the faster arrow will penetrate how much farther than the slower arrow?
A hypothetical planet has a radius \( 2.0 \) times that of Earth, but has the same mass. What is the acceleration due to gravity near its surface?
Consider the following cases of inelastic collisions.
Case (1) – A car moving at \(75 \, \text{mph}\) collides with another car of equal mass moving at \(75 \, \text{mph}\) in the opposite direction and comes to a stop.
Case (2) A car moving at \(75 \, \text{mph}\) hits a stationary steel wall and rolls back.
The collision time is the same for both cases. In which of these cases would result in the greatest impact force?
A 150-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope.
What constant force must be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.500 rev/s in 2.00 s?
Note: [katex] I_\text{disk} = \frac{1}{2}mr^2 [/katex]
A car travels to right at constant velocity. The net force on the car is
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.