0 attempts

0% avg

UBQ Credits

Projectile motion range is derived as follows:

- Express the horizontal and vertical components of the initial velocity.
- Determine the time of flight based on vertical motion.
- Calculate the horizontal distance traveled in this time.

Step | Formula Derivation | Reasoning |
---|---|---|

1.1 | [katex]v_{x} = v \cos(\theta)[/katex] | Horizontal component of initial velocity, constant since no air resistance. |

1.2 | [katex]v_{y0} = v \sin(\theta)[/katex] | Initial vertical component of the velocity. |

2.1 | [katex]t = \frac{2v_{y0}}{g}[/katex] | Time of flight, derived from [katex]v_{y} = v_{y0} – gt[/katex] and the fact that at maximum height, [katex]v_{y} = 0[/katex], hence [katex]t = \frac{2v_{y0}}{g}[/katex] for a round trip. |

2.2 | [katex]t = \frac{2v \sin(\theta)}{g}[/katex] | Substitute [katex]v_{y0} = v \sin(\theta)[/katex]. |

3.1 | [katex]R = v_{x} t[/katex] | Range is the horizontal distance traveled. |

3.2 | [katex]R = v \cos(\theta) \times \frac{2v \sin(\theta)}{g}[/katex] | Substitute [katex]v_{x} = v \cos(\theta)[/katex] and [katex]t[/katex] from step 2.2. |

3.3 | [katex]R = \frac{v^2 \sin(2\theta)}{g}[/katex] | Simplify using trigonometric identity [katex]\sin(2\theta) = 2 \sin(\theta) \cos(\theta)[/katex]. |

Now we apply this to find the new range when the launch speed is doubled.

Step | Formula Derivation | Reasoning |
---|---|---|

4.1 | [katex]R’ = \frac{(2v)^2 \sin(2\theta)}{g}[/katex] | New range formula with doubled speed [katex]2v[/katex]. |

4.2 | [katex]R’ = 4 \times \frac{v^2 \sin(2\theta)}{g}[/katex] | Simplify to show the relationship with the original range. |

4.3 | [katex]R’ = 4R[/katex] | Substitute the original range [katex]R[/katex]. |

Given the original range of 23 m, we will calculate the new range.

The new range, calculated from the derived formula with the launch speed doubled, is [katex]92.0 , \text{m}[/katex].

Phy can also check your working. Just snap a picture!

- Statistics

Intermediate

Mathematical

GQ

A golfer hits a shot to a green that is elevated 2.80 m above the point where the ball is struck. The ball leaves the club at a speed of 18.9 m/s at an angle of 52.0° above the horizontal. It rises to its maximum height and then falls down to the green. Ignoring air resistance, find the speed of the ball just before it lands.

- Projectiles

Advanced

Mathematical

FRQ

You kick a soccer ball with an initial velocity directed 53° above the horizontal. The ball lands on a roof 7.2 m high. The wall of the building is 25 m away, and it takes the ball 2.1 seconds to pass directly over the wall.

- Projectiles

Intermediate

Mathematical

GQ

A major-league pitcher can throw a baseball in excess of 41.0 m/s. If a ball is thrown horizontally at this speed, how much will it drop by the time it reaches a catcher who is 17.0 m away from the point of release?

- Projectiles

Advanced

Proportional Analysis

FRQ

On a distant planet, golf is just as popular as it is on earth. A golfer tees off and drives the ball 3.5 times as far as he would have on earth, given the same initial velocities on both planets. The ball is launched at a speed of 45 m/s at an angle of 29° above the horizontal. When the ball lands, it is at the same level as the tee. On the distant planet find:

- Projectiles

Intermediate

Mathematical

FRQ

A baseball is thrown at an angle of 25° relative to the ground at a speed of 23.0 m/s. The ball is caught 42.0 m from the thrower.

- Projectiles

92

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex] | [katex]F = ma[/katex] |

[katex]v = v_i + at[/katex] | [katex]F_g = \frac{G m_1m_2}{r^2}[/katex] |

[katex]a = \frac{\Delta v}{\Delta t}[/katex] | [katex]f = \mu N[/katex] |

[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex] |

Circular Motion | Energy |
---|---|

[katex]F_c = \frac{mv^2}{r}[/katex] | [katex]KE = \frac{1}{2} mv^2[/katex] |

[katex]a_c = \frac{v^2}{r}[/katex] | [katex]PE = mgh[/katex] |

[katex]KE_i + PE_i = KE_f + PE_f[/katex] |

Momentum | Torque and Rotations |
---|---|

[katex]p = m v[/katex] | [katex]\tau = r \cdot F \cdot \sin(\theta)[/katex] |

[katex]J = \Delta p[/katex] | [katex]I = \sum mr^2[/katex] |

[katex]p_i = p_f[/katex] | [katex]L = I \cdot \omega[/katex] |

Simple Harmonic Motion |
---|

[katex]F = -k x[/katex] |

[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex] |

[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex] |

Constant | Description |
---|---|

[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |

[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |

[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |

[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |

[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |

[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |

[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |

Variable | SI Unit |
---|---|

[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |

[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |

[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |

[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |

[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |

Variable | Derived SI Unit |
---|---|

[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |

[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |

[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |

[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |

[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |

[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |

[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |

[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`[katex]\text{5 km}[/katex]`

Use the conversion factors for kilometers to meters and meters to millimeters:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]`

Perform the multiplication:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]`

Simplify to get the final answer:

`[katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |

Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |

Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |

Milli- | m | [katex]10^{-3}[/katex] | 0.001 |

Centi- | c | [katex]10^{-2}[/katex] | 0.01 |

Deci- | d | [katex]10^{-1}[/katex] | 0.1 |

(Base unit) | – | [katex]10^{0}[/katex] | 1 |

Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |

Hecto- | h | [katex]10^{2}[/katex] | 100 |

Kilo- | k | [katex]10^{3}[/katex] | 1,000 |

Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |

Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |

Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |

- Some answers may be slightly off by 1% depending on rounding, etc.
- Answers will use different values of gravity. Some answers use 9.81 m/s
^{2}, and other 10 m/s^{2 }for calculations. - Variables are sometimes written differently from class to class. For example, sometime initial velocity [katex] v_i [/katex] is written as [katex] u [/katex]; sometimes [katex] \Delta x [/katex] is written as [katex] s [/katex].
- Bookmark questions that you can’t solve so you can come back to them later.
- Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages and Images
- Unlimited UBQ Credits
- 157% Better than GPT
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- All Smart Actions
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

UBQ credits are specifically used to grade your FRQs and GQs.

You can still view questions and see answers without credits.

Submitting an answer counts as 1 attempt.

Seeing answer or explanation counts as a failed attempt.

Lastly, check your average score, across every attempt, in the top left.

MCQs are 1 point each. GQs are 1 point. FRQs will state points for each part.

Phy can give partial credit for GQs & FRQs.

Phy sees everything.

It customizes responses, explanations, and feedback based on what you struggle with. Try your best on every question!

Understand you mistakes quicker.

For GQs and FRQs, Phy provides brief feedback as to how you can improve your answer.

Aim to increase your understadning and average score with every attempt!

10 Free Credits To Get You Started

*Phy Pro members get unlimited credits