AP Physics Unit

Unit 3 - Circular Motion

Advanced

Proportional Analysis

GQ

Two identical satellites are placed in orbit of two different planets. Satellite A orbits Mars, and Satellite B orbits Jupiter. The orbital speeds of each satellite are the same. Which satellite has a greater orbital radius?

Satellite B

Step Formula Derivation Explanation
1 v = \sqrt{\frac{GM}{r}} Orbital velocity formula, where v is orbital speed, G is the gravitational constant, M is the mass of the central planet, and r is the orbital radius.
2 v^2 = \frac{GM}{r} Squaring both sides of the orbital velocity formula.
3 r = \frac{GM}{v^2} Rearranging the formula to solve for r.
4 r \propto \frac{1}{v^2} for constant M The orbital radius is inversely proportional to the square of the orbital velocity for a given planetary mass.
5 r \propto M for constant v For a constant orbital speed, the orbital radius is directly proportional to the mass of the planet.
6 Mars vs. Jupiter Mars has a significantly lower mass than Jupiter.
7 Conclusion For the same orbital speed, Satellite B (orbiting Jupiter) will have a greater orbital radius compared to Satellite A (orbiting Mars).

This analysis shows that since Jupiter is much more massive than Mars, the satellite orbiting Jupiter (Satellite B) must have a larger orbital radius than the one orbiting Mars to maintain the same orbital speed.

Topics in this question

Discover how students preformed on this question | Coming Soon

Discussion Threads

Leave a Reply

Satellite B

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing, you agree to the updated Terms of Sale, Terms of Use, and Privacy Policy.

Suggest an Edit

What would you like us to add, improve, or change on this page? We listen to all your feedback!

Nerd-Notes.com
KinematicsForces
\Delta x = v_i \cdot t + \frac{1}{2} a \cdot t^2F = m \cdot a
v = v_i + a \cdot tF_g = \frac{G \cdot m_1 \cdot m_2}{r^2}
a = \frac{\Delta v}{\Delta t}f = \mu \cdot N
R = \frac{v_i^2 \cdot \sin(2\theta)}{g} 
Circular MotionEnergy
F_c = \frac{m \cdot v^2}{r}KE = \frac{1}{2} m \cdot v^2
a_c = \frac{v^2}{r}PE = m \cdot g \cdot h
 KE_i + PE_i = KE_f + PE_f
MomentumTorque and Rotations
p = m \cdot v\tau = r \cdot F \cdot \sin(\theta)
J = \Delta pI = \sum m \cdot r^2
p_i = p_fL = I \cdot \omega
Simple Harmonic Motion
F = -k \cdot x
T = 2\pi \sqrt{\frac{l}{g}}
T = 2\pi \sqrt{\frac{m}{k}}
ConstantDescription
gAcceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface
GUniversal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2
\mu_k and \mu_sCoefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion.
kSpring constant, in \text{N/m}
VariableSI Unit
s (Displacement)\text{meters (m)}
v (Velocity)\text{meters per second (m/s)}
a (Acceleration)\text{meters per second squared (m/s}^2\text{)}
t (Time)\text{seconds (s)}
m (Mass)\text{kilograms (kg)}
VariableDerived SI Unit
F (Force)\text{newtons (N)}
E, PE, KE (Energy, Potential Energy, Kinetic Energy)\text{joules (J)}
P (Power)\text{watts (W)}
p (Momentum)\text{kilogram meters per second (kg·m/s)}
\omega (Angular Velocity)\text{radians per second (rad/s)}
\tau (Torque)\text{newton meters (N·m)}
I (Moment of Inertia)\text{kilogram meter squared (kg·m}^2\text{)}
f (Frequency)\text{hertz (Hz)}

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: \text{5 km}

  2. Use the conversion factors for kilometers to meters and meters to millimeters: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}

  3. Perform the multiplication: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}

  4. Simplify to get the final answer: \boxed{5 \times 10^6 \, \text{mm}}

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

10^{-12}

Nano-

n

10^{-9}

Micro-

µ

10^{-6}

Milli-

m

10^{-3}

Centi-

c

10^{-2}

Deci-

d

10^{-1}

(Base unit)

10^{0}

Deca- or Deka-

da

10^{1}

Hecto-

h

10^{2}

Kilo-

k

10^{3}

Mega-

M

10^{6}

Giga-

G

10^{9}

Tera-

T

10^{12}

  1. Some answers may be slightly off by 1% depending on rounding, etc.
  2. Answers will use different values of gravity. Some answers use 9.81 m/s2, and other 10 m/s2 for calculations.
  3. Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
  4. Bookmark questions that you can’t solve so you can come back to them later. 
  5. Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!
We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.

Jason here! Feeling uneasy about your next physics test? I will help boost your grades in just two hours.

NEW!

Join Elite Memberships and get 25% off 1-to-1 Elite Tutoring!