0 attempts
0% avg
UBQ Credits
Before solving the question, we can find the radius of the ball using Pythagorean theorem to get .866 m. We can also use the trig to solve for the angle each rope makes with the horizontal (30° for both ropes).
Sum of Forces in the Horizontal Direction:
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] \cos(30) = \frac{\sqrt{3}}{2} [/katex] | Cosine of [katex]30^\circ[/katex]. |
2 | [katex] F_{\text{centripetal}} = \frac{mv^2}{r} [/katex] | Centripetal force for circular motion. |
3 | [katex] T_1 \cos(\theta) + T_2 \cos(\theta) = \frac{mv^2}{r} [/katex] | Sum of horizontal components of tension equals centripetal force. |
4 | [katex] T_1 \frac{\sqrt{3}}{2} + T_2 \frac{\sqrt{3}}{2} = \frac{(0.5)(7.2)^2}{0.866} [/katex] | Substitute values for [katex]m[/katex], [katex]v[/katex], [katex]r[/katex], and [katex]\cos(\theta)[/katex]. |
5 | [katex] \frac{\sqrt{3}}{2}(T_1 + T_2) = 29.93 [/katex] | Calculate centripetal force and factor out [katex]\frac{\sqrt{3}}{2}[/katex]. |
Sum of Forces in the Vertical Direction:
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] \sin(30) = \frac{1}{2} [/katex] | Sine of [katex]30^\circ[/katex]. |
2 | [katex] w = mg [/katex] | Weight of the sphere. |
3 | [katex] T_2 \sin(\theta) + mg – T_1 \sin(\theta) = 0 [/katex] | Vertical forces must balance: upward tensions and downward weight. |
4 | [katex] T_2 \frac{1}{2} + (0.5)(9.8) – T_1 \frac{1}{2} = 0 [/katex] | Substitute values for [katex]m[/katex], [katex]g[/katex], and [katex]\sin(\theta)[/katex]. |
5 | [katex] \frac{1}{2}(T_2 – T_1) + 4.9 = 0 [/katex] | Factor out [katex]\frac{1}{2}[/katex] and calculate weight. |
Solving for Tensions:
Step | Formula Derivation | Reasoning |
---|---|---|
1 | Solve equations | Use the system of equations to solve for [katex]T_1[/katex] and [katex]T_2[/katex]. |
2 | [katex] T_1 \approx 22.18 \text{ N} [/katex] | Numerical solution for [katex]T_1[/katex]. |
3 | [katex] T_2 \approx 12.38 \text{ N} [/katex] | Numerical solution for [katex]T_2[/katex]. |
Final Tensions:
Just ask: "Help me solve this problem."
Two identical object rests on a platform rotating at constant speed. Object A is at distance of half the platform’s radius from the center. Object B lays at edge of the platform. Assuming the platform continues rotating at the same speed, how does the centripetal force of the two objects compare?
A person’s back is against the inner wall of spinning cylinder with no support under their feet. If the radius is R, find an expression for the minimum angular speed so the person does not slide down the wall. The coefficient of static friction is µs.
Note: If you haven’t studied angular velocity [katex] \omega [/katex] yet, just find the linear velocity v.
A planet of constant mass orbits the sun in an elliptical orbit. Neglecting any friction effects, what happens to the planet’s rotational kinetic energy about the sun’s center?
A speed skater goes around a turn that has a radius of 31 m. The skater has a speed of 14 m/s and experiences a centripetal force of 460 N. What is the mass of the skater?
Which of the following best explains why astronauts experience weightlessness while orbiting the earth?
Upper wire: 22 N; Lower wire: 12 N
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.