0 attempts
0% avg
| Derivation/Formula | Reasoning |
|---|---|
| \[ a = \frac{g\sin(\theta)}{1+\frac{I}{m\Delta x^2}} \] | This is the general formula for the acceleration \(a\) of a rolling object down an incline, where \(g\) is gravitational acceleration, \(\theta\) is the incline angle, \(I\) is the moment of inertia, \(m\) is the mass, and \(\Delta x\) plays the role of the radius \(r\) in our variable notation. |
| \[ I = \frac{2}{5} m\Delta x^2 \] | This is the moment of inertia for a uniform solid sphere. Note that for the small sphere, \(\Delta x = R\) and for the large sphere, \(\Delta x = 2R\), with an appropriate mass substituted. |
| \[ a = \frac{g\sin(\theta)}{1+\frac{2}{5}} = \frac{g\sin(\theta)}{\frac{7}{5}} = \frac{5}{7}g\sin(\theta) \] | Substituting \(I=\frac{2}{5}m\Delta x^2\) into the acceleration formula shows that \(a\) simplifies to \(\frac{5}{7}g\sin(\theta)\). The ratio \(\frac{I}{m\Delta x^2}\) becomes \(\frac{2}{5}\) regardless of \(R\) or mass, because both mass and the square of the radius scale accordingly. |
| \[ t \propto \sqrt{\frac{\Delta x}{a}} \] | This shows that the time \(t\) to travel a distance \(\Delta x\) is determined by the acceleration \(a\). Since both spheres have the same \(a\) and start from rest on the same incline, they take the same time to reach the bottom. |
| \[ \boxed{\text{(c) Both reach the bottom at the same time}} \] | The analysis indicates that neither mass nor radius affects the acceleration for a uniform sphere rolling without slipping, so both spheres reach the bottom simultaneously. The other options are incorrect because they suggest a dependence on mass or size, which cancels out in the equation. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
To increase the moment of inertia of a body about an axis, you must
A horizontal uniform rod of length L and mass M is pivoted at one end and is initially at rest. A small ball of mass M (same masses) is attached to the other end of the rod. The system is released from rest. What is the angular acceleration of the rod just immediately after the system is released?
A uniform stick has length \( L \). The moment of inertia about the center of the stick is \( I_0 \). A particle of mass \( M \) is attached to one end of the stick. The moment of inertia of the combined system about the center of the stick is
A solid sphere of mass [katex] 1.5 \, \text{kg} [/katex] and radius [katex] 15 \, \text{cm} [/katex] rolls without slipping down a [katex] 35^\circ[/katex] incline that is [katex] 7 \, \text{m} [/katex] long. Assume it started from rest. The moment of inertia of a sphere is [katex] I= \frac{2}{5}MR^2 [/katex].

A uniform rod of length \( L \) and mass \( M \) is free to rotate about one end, as shown in the diagram. The free end is released from rest at a horizontal position, as shown. The pivot point is supported by a stand so that only the free end can move. The moment of inertia of a rod about its end is \(\tfrac{1}{3} M L^{2}\).
A spinning ice skater on extremely smooth ice is able to control the rate at which she rotates by pulling in her arms. Which of the following statements are true about the skater during this process?
A uniform, solid, \( 100 \) \( \text{kg} \) cylinder with a diameter of \( 1.0 \) \( \text{m} \) is mounted so it is free to rotate about a fixed, horizontal, frictionless axis that passes through the centers of its circular ends. A \( 10 \) \( \text{kg} \) block is hung from a very light, thin cord wrapped around the cylinder’s circumference. When the block is released, the cord unwinds and the block accelerates downward. What is the acceleration of the block?
| Wagon | Wheel Structure | Moment of Inertia | Wheel Mass | Wheel Radius |
|---|---|---|---|---|
| Wagon \(A\) | Solid disk | \[\frac{1}{2} M R^2\] | \[ 0.5 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
| Wagon \(B\) | Solid disk | \[\frac{1}{2} M R^2\] | \[ 0.2 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
| Wagon \(C\) | Hollow hoop | \[M R^2\] | \[ 0.1 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
Three wagons have identical total mass (including their wheels) and each has four wheels. However, the wheels on each wagon have different designs with varying mass distributions and radii as shown in a reference chart. When accelerating each wagon from a standstill to \( 10 \) \( \text{m/s} \), which wagon requires the most energy input?
An object’s angular momentum changes by \( 10 \,\text{kg} \cdot \text{m}^2/\text{s} \) in \( 2.0 \) \( \text{s} \). What magnitude average torque acted on this object?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?