0 attempts
0% avg
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[p_{\text{initial}} =\]
\[(1.0\,\text{kg}\cdot6.0\,\text{m/s}) + (2.0\,\text{kg}\cdot3.0\,\text{m/s}) =\] \[12.0\,\text{kg\,m/s}\] |
Calculate the total initial momentum by summing the momenta of both objects. Note that both are moving in the same direction. |
| 2 | \[v_x = \frac{p_{\text{initial}}}{1.0\,\text{kg} + 2.0\,\text{kg}} = \frac{12.0}{3.0} = 4.0\,\text{m/s}\] | Use conservation of momentum for an inelastic collision to find the final velocity \(v_x\) of the combined mass. |
| 3 | \[KE_{\text{initial}} =\]
\[\frac{1}{2}(1.0\,\text{kg}\cdot(6.0\,\text{m/s})^2) + \frac{1}{2}(2.0\,\text{kg}\cdot(3.0\,\text{m/s})^2) =\] \[ 18.0\,\text{J} + 9.0\,\text{J} = 27.0\,\text{J}\] |
Compute the total initial kinetic energy by summing the kinetic energies of both masses. |
| 4 | \[KE_{\text{final}} = \frac{1}{2}(3.0\,\text{kg}\cdot(4.0\,\text{m/s})^2) =\]
\[ \frac{1}{2}(3.0\,\text{kg}\cdot16.0\,\text{m}^2/\text{s}^2) = 24.0\,\text{J}\] |
Determine the final kinetic energy of the combined object moving at \(v_x = 4.0\,\text{m/s}\). |
| 5 | \[\Delta KE = KE_{\text{initial}} – KE_{\text{final}} = 27.0\,\text{J} – 24.0\,\text{J} = 3.0\,\text{J}\] | Calculate the kinetic energy lost in the collision by subtracting the final kinetic energy from the initial kinetic energy. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
A force \(F\) is exerted by a broom handle on the head of a broom, which has a mass \(m\). The handle is at an angle \(\theta\) to the horizontal. The work done by the force on the head of the broom as it moves a distance \(d\) across a horizontal floor is

Two particles of equal mass \( m_0 \) are moving with equal speeds \( v_0 \) along paths inclined at \( 60^\circ \) to the \( x \)-axis, as shown above. They collide and stick together in a perfectly inelastic collision. Their velocity after the collision has magnitude:
A truck going \(15 \, \text{km/h}\) has a head-on collision with a small car going \(30 \, \text{km/h}\). Which statement best describes the situation?

Two blocks, [katex] m_2 > m_1 [/katex], having the same kinetic energy, move from a frictionless surface onto a surface having friction coefficient [katex] \mu_k [/katex]. Which block will travel further before stopping.
A \(2 \, \text{kg}\) model rocket is launched with a thrust force of \(275 \, \text{N}\) and reaches a height of \(90 \, \text{m}\), at which point the thrust cuts out, but the rocket continues moving at \(150 \, \text{m/s}\). What is the average air resistance force acting on the rocket during its ascent?
A \(0.10 \, \text{kg}\) ball, traveling horizontally at \(25 \, \text{m/s}\), strikes a wall and rebounds at \(19 \, \text{m/s}\). What is the magnitude of the change in the momentum of the ball during the rebound?
Consider the following cases of inelastic collisions.
Case (1) – A car moving at \(75 \, \text{mph}\) collides with another car of equal mass moving at \(75 \, \text{mph}\) in the opposite direction and comes to a stop.
Case (2) A car moving at \(75 \, \text{mph}\) hits a stationary steel wall and rolls back.
The collision time is the same for both cases. In which of these cases would result in the greatest impact force?
A firecracker in a coconut blows the coconut into three pieces. Two pieces of equal mass fly off south and west, perpendicular to each other, at \( 18 \) \( \text{m/s} \). The third piece has \( 2.5 \) times the mass as the other two.

A sphere starts from rest and rolls down an incline of height \( H = 1.0 \) \( \text{m} \) at an angle of \( 25^\circ \) with the horizontal, as shown above. The radius of the sphere \( R = 15 \) \( \text{cm} \), and its mass \( m = 1.0 \) \( \text{kg} \). The moment of inertia for a sphere is \( \frac{2}{5}mR^2 \). What is the speed of the sphere when it reaches the bottom of the plane?
In a town’s water system, pressure gauges in still water at street level read \( 150 \) \( \text{kPa} \). If a pipeline connected to the system breaks and shoots water straight up, how high above the street does the water shoot?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?