AP Physics

Unit 4 - Energy

Intermediate

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part A – Velocity of block

Step Derivation/Formula Reasoning
1 \( \frac{1}{2} m v_x^2 = m g (3.0) \) Apply conservation of energy. The gravitational potential energy lost by the block when dropped from \(3.0\) m is converted entirely into kinetic energy just before impact.
2 \( \frac{1}{2} v_x^2 = g (3.0) \) Cancel the mass \(m\) (since it appears on both sides) to isolate the velocity term.
3 \( v_x^2 = 2 g (3.0) \) Multiply both sides by 2 to solve for \(v_x^2\).
4 \( v_x = \sqrt{2 \times 9.8 \times 3.0} \) Substitute \(g = 9.8\ \text{m/s}^2\) into the equation.
5 \( v_x = \sqrt{58.8} \approx 7.67\ \text{m/s} \) Calculate the square root to determine the final speed just before the spring is struck.
6 \( \boxed{v_x \approx 7.67\ \text{m/s}} \) This is the final answer for part (a).

Part B – Spring Energy

Step Derivation/Formula Reasoning
1 \( \Delta h = 3.0\,\text{m} + 0.50\,\text{m} = 3.5\,\text{m} \) The block drops 3.0 m before striking the spring and an additional \(0.50\,\text{m}\) while compressing the spring, so the total vertical drop is \(3.5\,\text{m}\).
2 \( U_{\text{spring}} = m g \Delta h \) The total elastic potential energy stored in the spring equals the gravitational potential energy lost by the block over the total drop \(\Delta h\).
3 \( U_{\text{spring}} = 240 \times 9.8 \times 3.5 \) Substitute \(m = 240\,\text{kg}\), \(g = 9.8\,\text{m/s}^2\), and \(\Delta h = 3.5\,\text{m}\) into the energy formula.
4 \( U_{\text{spring}} \approx 8232\,\text{J} \) Performing the multiplication, \(240 \times 9.8 = 2352\) and \(2352 \times 3.5 \approx 8232\), yielding the stored elastic energy.
5 \( \boxed{U_{\text{spring}} \approx 8232\,\text{J}} \) This is the final answer for part (b): the total elastic potential energy stored in the spring.

Part C – Spring Constant

Step Derivation/Formula Reasoning
1 \( \frac{1}{2} k (\Delta x)^2 = U_{\text{spring}} \) The elastic potential energy stored in a compressed spring is given by \(\frac{1}{2} k (\Delta x)^2\), where \(\Delta x\) is the compression distance.
2 \( \frac{1}{2} k (0.50)^2 = 8232 \) Substitute \(\Delta x = 0.50\,\text{m}\) and \(U_{\text{spring}} = 8232\,\text{J}\) into the formula.
3 \( \frac{1}{2} k \times 0.25 = 8232 \) Calculate \((0.50)^2 = 0.25\) and rewrite the equation.
4 \( 0.125 k = 8232 \) Simplify \(\frac{1}{2} \times 0.25\) to \(0.125\).
5 \( k = \frac{8232}{0.125} = 8232 \times 8 \) Solve for \(k\) by dividing both sides by \(0.125\); note that \(\frac{1}{0.125} = 8\).
6 \( k \approx 65856\,\text{N/m} \) Multiply to find the spring constant.
7 \( \boxed{k \approx 6.59 \times 10^4\,\text{N/m}} \) This is the final answer for part (c), rounded to three significant figures.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(\boxed{v_x \approx 7.67\,\text{m/s}\)
  2. \(U_{\text{spring}} \approx 8232\,\text{J}\)
  3. \(k \approx 6.59 \times 10^4\,\text{N/m}}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.