New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

to use all UBQ features!

Physics UBQ

Supercharge Your Learning with 1000+ AP Level Physics Problems
0%
Phy UBQ Count Message Here
Advanced
Conceptual
MCQ

A child of mass \( 3 \) \( \text{kg} \) rotates on a platform of \( 10 \) \( \text{kg} \). They start walking towards the center while the platform is rotating. Which of the following could possibly decrease the total angular momentum of the child-platform system?

Advanced
Mathematical
FRQ

A block of mass [katex] m [/katex] is moving on a horizontal frictionless surface with a speed [katex] v_0 [/katex] as it approaches a block of mass [katex] 2m [/katex] which is at rest and has an ideal spring attached to one side.

When the two blocks collide, the spring is completely compressed and the two blocks momentarily move at the same speed, and then separate again, each continuing to move.

Advanced
Mathematical
MCQ

A theme park ride consists of a large vertical wheel of radius \( R \) that rotates counterclockwise on a horizontal axle through its center. The cars on the wheel move at a constant speed \( v \). Points \( A \) and \( D \) represent the position of a car at the highest and lowest point of the ride, respectively. While passing point \( A \), a student releases a small rock of mass \( m \), which falls to the ground without hitting anything. Which of the following best represents the kinetic energy of the rock when it is at the same height as point \( D \)?

Beginner
Conceptual
MCQ

The magnitude of a component of a vector must be

Intermediate
Mathematical
MCQ

A child pushes horizontally on a box of mass m with constant speed v across a rough horizontal floor. The coefficient of friction between the box and the floor is µ. At what rate does the child do work on the box?

Intermediate
Mathematical
FRQ

A \(10 \, \text{kg}\) box is pushed to the right by an unknown force at an angle of \(25^\circ\) below the horizontal while a friction force of \(50 \, \text{N}\) acts on the box as well. The box accelerates from rest and travels a distance of \(4 \, \text{m}\) where it is moving at \(3 \, \text{m/s}\).

Advanced
Mathematical
MCQ

A box of mass \(m\) is initially at rest at the top of a ramp that is at an angle \(\theta\) with the horizontal. The block is at a height \(h\) and length \(L\) from the bottom of the ramp. The coefficient of kinetic friction between the block and the ramp is \(\mu\). What is the kinetic energy of the box at the bottom of the ramp?

Intermediate
Conceptual
MCQ

The motions of a car and a truck along a straight road are represented by the velocity–time graphs in the figure. The two vehicles are initially alongside each other at time \(t = 0\). At time \(T\), what is true of the distances traveled by the vehicles since time \(t = 0\)?

Advanced
Mathematical
GQ

A \( 1000 \) \( \text{kg} \) car is traveling east at \( 20 \) \( \text{m/s} \) when it collides perfectly inelastically with a northbound \( 2000 \) \( \text{kg} \) car traveling at \( 15 \) \( \text{m/s} \). If the coefficient of kinetic friction is \( 0.9 \), how far, and at what angle do the two cars skid before coming to a stop?

Advanced
Mathematical
FRQ

A Corvette is traveling at a constant velocity \( 30 \, \text{m/s} \) when it passes a stationary supped up Civic. At that moment, the Civic puts the pedal to the floor and accelerates at \( 6 \, \text{m/s}^2 \). The Civic eventually catches up to the Corvette.

Advanced
Mathematical
MCQ

A roller coaster car crosses the top of a circular loop-the-loop at twice the critical speed. What is the ratio of the normal force to the gravitational force?

Advanced
Mathematical
MCQ

A string is wound tightly around a fixed pulley having a radius of 5.0 cm. As the string is pulled, the pulley rotates without any slipping of the string. What is the angular speed of the pulley when the string is moving at 5.0 m/s?

Beginner
Mathematical
GQ

What force is necessary to stretch an ideal spring with a spring constant of \( 120 \) \( \text{N/m} \) by \( 30 \) \( \text{cm} \)?

Beginner
Mathematical
MCQ

A meter stick of mass [katex] .2 [/katex] kg is pivoted at one end and supported horizontally. A force of [katex] 3 [/katex] N downwards is applied to the free end, perpendicular to the length of the meter stick. What is the net torque about the pivot point?

Beginner
Mathematical
GQ

A stone is thrown vertically upwards with a speed of \( 20.0 \) \( \text{m/s} \). How fast is it moving when it reaches a height of \( 12.0 \) \( \text{m} \)?

Advanced
Mathematical
MCQ

An object undergoes constant acceleration. Starting from rest, the object travels \( 5 \, \text{m} \) in the first second. Then it travels \( 15 \, \text{m} \) in the next second. What total distance will be covered after the 3rd second?

Beginner
Mathematical
MCQ

A liquid flows at a constant flow rate through a pipe with circular cross-sections of varying diameters. At one point in the pipe, the diameter is \(2\) \(\text{cm}\) and the flow speed is \(18\) \(\text{m/s}\). What is the flow speed at another point in this pipe, where the diameter is \(3\) \(\text{cm}\).

Advanced
Conceptual
GQ

A man with mass \( m \) is standing on a rotating platform in a science museum. The platform can be approximated as a uniform disk of radius \( R \) that rotates without friction at a constant angular velocity \( \omega \). Two students are discussing what the man should do if he wishes to change the angular velocity of the platform.

Student A says that the man should run towards the center of the platform, because this will decrease the moment of inertia of the man-platform system. Since \( L \propto I \), the angular momentum will decrease proportionately and the platform will slow down.

Student B says that since the platform is rotating counterclockwise, the man should run in a clockwise direction to slow the platform down. His feet will exert a frictional torque on the platform, which will cause an angular acceleration of the man-platform system.

Explain what is correct and incorrect about each students statement if anything.

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Sign In to View Your Questions

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.