0 attempts
0% avg
UBQ Credits
# Part (a) Determine the sprinter’s constant acceleration during the first \(2 \, \text{seconds}\).
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]d_1 = 100 \, \text{m} \, – \, 90 \, \text{m} = 10 \, \text{m}[/katex] | The first part of the sprint covers 10 meters. |
2 | [katex]d_1 = \frac{1}{2} a t_1^2[/katex] | Use the formula for distance under constant acceleration starting from rest: [katex]d = \frac{1}{2} a t^2[/katex]. |
3 | [katex]10 \, \text{m} = \frac{1}{2} a (2 \, \text{s})^2 [/katex] | Substitute [katex] d_1 = 10 \, \text{m} [/katex] and [katex] t_1 = 2 \, \text{s} [/katex]. |
4 | [katex]10 \, \text{m} = 2 a \, \text{s}^2 [/katex] | Simplify the equation. |
5 | [katex]a = 5 \, \text{m/s}^2 [/katex] | Solving for acceleration gives [katex]a[/katex]. |
6 | [katex]a = 5 \, \text{m/s}^2[/katex] | Constant acceleration value. |
# Part (b) Determine the sprinter’s velocity after 2 seconds have elapsed.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v = a t_1 [/katex] | Using the formula for velocity under constant acceleration: [katex]v = a t[/katex]. |
2 | [katex]v = 5 \, \text{m/s}^2 \times 2 \, \text{s}[/katex] | Substitute [katex] a = 5 \, \text{m/s}^2 [/katex] and [katex] t_1 = 2 \, \text{s} [/katex]. |
3 | [katex]v = 10 \, \text{m/s}[/katex] | Solve for [katex]v[/katex]. |
# Part (c) Determine the total time needed to run the full 100 meters.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v = d_2 / t_2 [/katex] | The velocity [katex]v[/katex] is constant for the remaining part of the race. |
2 | [katex]10 \, \text{m/s} = 90 \, \text{m} / t_2 [/katex] | Substitute [katex] v = 10 \, \text{m/s} [/katex] and [katex] d_2 = 90 \, \text{m} [/katex]. |
3 | [katex]t_2 = 90 \, \text{m} / 10 \, \text{m/s} [/katex] | Rearrange to solve for [katex] t_2 [/katex]. |
4 | [katex]t_2 = 9 \, \text{s} [/katex] | Solve for [katex] t_2 [/katex]. |
5 | [katex]t_{\text{total}} = t_1 + t_2 = 2 \, \text{s} + 9 \, \text{s} [/katex] | The total time is the sum of the two intervals. |
6 | [katex]t_{\text{total}} = 11 \, \text{s} [/katex] | Total time to run 100 meters. |
# Part (d) Draw the displacement vs time curve for the sprinter.
The displacement vs. time graph would show a parabolic curve for the first 2 seconds and a linear relationship thereafter to indicate constant velocity:
1. From [katex] t = 0 [/katex] to [katex] t = 2 [/katex] seconds, the curve will be a parabola opening upwards.
2. From [katex] t = 2[/katex] seconds to [katex] t = 11 [/katex] seconds, the curve will be a straight line with a constant slope of [katex]10 \, \text{m/s}[/katex].
Just ask: "Help me solve this problem."
A ball is tossed directly upward. Its total time in the air is \( T \). Its maximum height is \( H \). What is its height after it has been in the air a time \( T/4 \)? Air resistance is negligible.
A horizontal 300 N force pushes a 40 kg object across a horizontal 10 meter frictionless surface. After this, the block slides up a 20° incline. Assuming the incline has a coefficient of kinetic friction of 0.4, how far along the incline with the object slide?
Which pair of graphs represents the same 1- dimensional motion?
A car starts from rest and accelerates uniformly over a time of 5 seconds for a distance of 100 m. Determine the acceleration of the car.
A ranger in a national park is driving at \( 56 \, \text{km/h} \) when a deer jumps onto the road \( 65 \, \text{m} \) ahead of the vehicle. After a reaction time of \( t \, \text{s} \), the ranger applies the brakes to produce an acceleration of \( -3 \, \text{m/s}^2 \). What is the maximum reaction time allowed if the ranger is to avoid hitting the deer?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.