to use all UBQ features!

Physics UBQ

Supercharge Your Learning with 1000+ AP Level Physics Problems
0%
Phy UBQ Count Message Here
Intermediate
Mathematical
MCQ

A cart starts from rest and accelerates uniformly at 4.0 m/s2 for 5.0 s. It next maintains the velocity it has reached for 10 s. Then it slows down at a steady rate of 2.0 m/s2 for 4.0 s. What is the final speed of the car?

Intermediate
Mathematical
FRQ

A baseball is seen to pass upward by a window with a vertical speed of \( 14 \) \( \text{m/s} \). If the ball was thrown by a person \( 18 \) \( \text{m} \) below on the street, determine the following.

Intermediate
Mathematical
MCQ

Consider a rigid body that is rotating. Which of the following is an accurate statement?

Intermediate
Mathematical
MCQ

An object is moving at constant velocity. Which of the following could be the free-body diagram representing the forces acting on the object?

Advanced
Mathematical
MCQ

A baseball is thrown vertically into the air with a velocity \( v \), and reaches a maximum height \( h \). At what height was the baseball moving with one-half its original velocity? Assume air resistance is negligible.

Intermediate
Conceptual
MCQ

Which graph below shows that one of the runners started 10 meters further ahead of the other? Assume the y-axis is measured in meters and the x-axis is measured in seconds.

Intermediate
Mathematical
MCQ

Alcohol has a specific gravity of \( 0.79 \). If a barometer consisting of an open-ended tube placed in a dish of alcohol is used at sea level, to what height in the tube will the alcohol rise?

Advanced
Mathematical
FRQ

An object is thrown upward at \( 65 \, \text{m/s} \) from the top of a \( 800 \, \text{m} \) tall building.

Advanced
Mathematical
FRQ

A spherical balloon of mass \( 226 \) \( \text{kg} \) is filled with helium gas until its volume is \( 325 \) \( \text{m}^3 \). Assume the density of air is \( 1.29 \) \( \text{kg/m}^3 \) and the density of helium is \( 0.179 \) \( \text{kg/m}^3 \).

Advanced
Mathematical
GQ

On a harsh winter day, a \( 1500 \) \( \text{kg} \) vehicle takes a circular banked exit ramp (radius \( R = 150 \) \( \text{m} \); banking angle of \( 10^\circ \)) at a speed of \( 30 \) \( \text{mph} \), since the speed limit is \( 35 \) \( \text{mph} \). However, the exit ramp is completely iced up (frictionless). To make matters worse, a wind is blowing parallel to the ramp in a downward direction. The wind exerts a force of \( 3000 \) \( \text{N} \). Under these conditions, can the driver continue to follow a safe horizontal circle on the exit ramp and stay below the speed limit?

To convert \( \text{mph} \) into \( \text{m/s} \), use \( 1 \) \( \text{mi} = 1607 \) \( \text{m} \) and \( 1 \) \( \text{hr} = 3600 \) \( \text{s} \).

Intermediate
Mathematical
MCQ

A soccer ball is kicked horizontally off an \( 85 \) \( \text{m} \) high cliff at a speed of \( 34 \) \( \text{m/s} \). What is the ball’s final speed when it hits the ground below?

Intermediate
Conceptual
MCQ

A ladder is leaning against a wall at an angle. Which of the following forces must have the same magnitude as the frictional force exerted on the ladder by the floor?

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Sign In to View Your Questions

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.