to use all UBQ features!

Physics UBQ

Supercharge Your Learning with 1000+ AP Level Physics Problems
0%
Phy UBQ Count Message Here
Beginner
Conceptual
GQ

If an elephant were chasing you, its enormous mass would be most threatening. But if you zigzagged, its mass would be to your advantage. Why?

Advanced
Mathematical
GQ

A ball of radius \( r \) rolls on the inside of a circular track of radius \( R \). If the ball starts from rest at the left vertical edge of the track, what will be its speed when it reaches the lowest point of the track, rolling without slipping?

Advanced
Mathematical
FRQ

Two students are on a balcony 19.6 m above the street. One student throws a ball vertically downward at 14.7 m/s. At the same instant, the other student throws a ball vertically upward at the same speed. The second ball just misses the balcony on the way down.

Intermediate
Mathematical
MCQ

A wheel of moment of inertia of \( 5.00 \) \( \text{kg} \cdot \text{m}^2 \) starts from rest and accelerates under a constant torque of \( 3.00 \) \( \text{N} \cdot \text{m} \) for \( 8.0 \) \( \text{s} \). What is the wheel’s rotational kinetic energy at the end of \( 8.0 \) \( \text{s} \)?

Advanced
Conceptual
MCQ

A simple pendulum oscillates with amplitude [katex]A[/katex] and period [katex]T[/katex], as represented on the graph above. Which option bests represents the magnitude of the pendulum’s velocity [katex]v[/katex] and acceleration [katex]a[/katex] at time [katex] \frac{T}{2} [/katex]?

Advanced
Mathematical
MCQ

An object is moving to the west at a constant speed. Three forces are exerted on the object. One force is \( 10 \) \( \text{N} \) directed due north, and another is \( 10 \) \( \text{N} \) directed due west. What is the magnitude and direction of the third force if the object is to continue moving to the west at a constant speed?

Advanced
Mathematical
FRQ

Shown above are three masses of \(6 \, \text{kg}\), \(3 \, \text{kg}\), and \(1 \, \text{kg}\) (in order from left to right). You pull on the 1kg mass with a force \(F\) of \(15 \, \text{N}\) along a frictionless surface.

Advanced
Proportional Analysis
MCQ

A circus cannon fires an acrobat into the air at an angle of \( 45^\circ \) above the horizontal, and the acrobat reaches a maximum height \( y \) above her original launch height. The cannon is now aimed so that it fires straight up, at an identical speed, into the air at an angle of \( 90^\circ \) to the horizontal. In terms of \( y \), what is the acrobat’s new maximum height?

Advanced
Conceptual
MCQ

A kickball is rolled by the pitcher at a speed of 10 m/s and it is kicked by another student. The kickball deforms a little during the kick, and then rebounds with a velocity of 15 m/s as its shape restores to a perfect sphere. Select all that must be true about the kickball and the kicking foot system.

Intermediate
Conceptual
MCQ

Which of the following graphs shows runners moving at the same speed? Assume the \(y\)-axis is measured in meters and the \(x\)-axis is measured in seconds.

Beginner
Mathematical
FRQ

The first \(10 \, \text{meters}\) of a \(100 \, \text{meter}\) dash are covered in \(2 \, \text{seconds}\) by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining \(90 \, \text{meters}\) are run with the same velocity the sprinter had after \(2 \, \text{seconds}\).

Intermediate
Mathematical
FRQ

A system consists of two small disks, of masses \( m \) and \( 2m \), attached to a rod of negligible mass of length \( 3l \) as shown above. The rod is free to turn about a vertical axis through point \( P \). The two disks rest on a rough horizontal surface; the coefficient of friction between the disks and the surface is \( \mu \). At time \( t = 0 \), the rod has an initial counterclockwise angular velocity \( \omega_0 \) about \( P \). The system is gradually brought to rest by friction. Develop expressions for the following quantities in terms of \( \mu \), \( m \), \( l \), \( g \), and \( \omega_0 \).

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Sign In to View Your Questions

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.