0 attempts
0% avg
UBQ Credits
For the banked curve, the centripetal force necessary to make the turn is provided by the horizontal component of the normal force. When a car travels faster than the design speed, additional centripetal force must be provided by friction.
The centripetal force required for a car traveling at speed [katex]v[/katex] on a curve of radius [katex]R[/katex] is [katex]F_c = \frac{mv^2}{R}[/katex]. The component of the normal force providing this centripetal force on a banked curve without friction is [katex]F_{c0} = \frac{mv_0^2}{R}[/katex].
The additional centripetal force required due to the increased speed must be provided by static friction [katex]f_s[/katex], which is [katex]\mu_s N[/katex], where [katex]N[/katex] is the normal force and [katex]\mu_s[/katex] is the coefficient of static friction.
Step | Formula / Derivation | Reasoning |
---|---|---|
1 | [katex]F_{c0} = \frac{mv_0^2}{R}[/katex] | Centripetal force for design speed. |
2 | [katex]F_{c} = \frac{mv^2}{R}[/katex] | Centripetal force for actual speed. |
3 | [katex]f_s = F_{c} – F_{c0}[/katex] | Additional force required from static friction. |
4 | [katex]f_s = \mu_s N[/katex] | Static friction force. |
5 | [katex]N = mg \cos(\theta)[/katex] | Normal force on banked curve, where [katex]\theta[/katex] is the banking angle. |
6 | [katex]\tan(\theta) = \frac{v_0^2}{Rg}[/katex] | Relationship for a banked curve without friction. |
7 | [katex]\mu_s = \frac{f_s}{N}[/katex] | Coefficient of static friction. |
8 | [katex]\mu_s = \frac{F_{c} – F_{c0}}{mg \cos(\theta)}[/katex] | Combine steps 3, 4, and 5. |
9 | [katex]\mu_s = \frac{\frac{mv^2}{R} – \frac{mv_0^2}{R}}{mg \cos(\theta)}[/katex] | Substitute [katex]F_{c}[/katex] and [katex]F_{c0}[/katex] from steps 1 and 2. |
10 | [katex]\mu_s = \frac{v^2 – v_0^2}{Rg \cos(\theta)}[/katex] | Mass [katex]m[/katex] cancels out. |
11 | [katex]\mu_s = \frac{53^2 – 40^2}{125 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Substitute values for [katex]v[/katex], [katex]v_0[/katex], and [katex]R[/katex]. |
12 | [katex]\mu_s = \frac{2809 – 1600}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Square the speeds. |
13 | [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \cos(\theta)}[/katex] | Subtract the squares. |
14 | [katex]\mu_s = \frac{1209}{1225 \cdot 9.8 \cdot \frac{40^2}{125 \cdot 9.8}}[/katex] | Substitute [katex]\cos(\theta)[/katex] from step 6. |
15 | [katex]\mu_s = \frac{1209 \cdot 125}{1225 \cdot 40^2}[/katex] | Simplify. |
16 | [katex]\boxed{\mu_s = \frac{1209}{1960}}[/katex] | Final calculation for [katex]\mu_s[/katex]. |
The coefficient of static friction required is approximately [katex]\frac{1209}{1960}[/katex], which can be simplified further if needed.
Just ask: "Help me solve this problem."
A [katex] 2.2 \times 10^{21} \, \text{kg}[/katex] moon orbits a distant planet in a circular orbit of radius [katex] 1.5 \times 10^8 \, \text{m}[/katex]. It experiences a [katex] 1.1 \times 10^{19} \, \text{N}[/katex] gravitational pull from the planet. What is the moon’s orbital period in earth days?
A car is moving up the side of a circular roller coaster loop of radius 12 m. The angular velocity is [katex] 1.8 \, \text{rad/s} [/katex] and angular acceleration is [katex] -0.82 \, \text{rad/s}^2 [/katex]. The car is at the same elevation as the center of the loop. Find the magnitude and direction of the acceleration.
A speed skater goes around a turn that has a radius of 31 m. The skater has a speed of 14 m/s and experiences a centripetal force of 460 N. What is the mass of the skater?
The diagram above shows a marble rolling down an incline, the bottom part of which has been bent into a loop. The marble is released from point A at a height of 0.80 m above the ground. Point B is the lowest point and point C the highest point of the loop. The diameter of the loop is 0.35 m. The mass of the marble is 0.050 kg. Friction forces and any gain in kinetic energy due to the rotating of the marble can be ignored. When answering the following questions, consider the marble when it is at point C.
A child has a toy tied to the end of a string and whirls the toy at constant speed in a horizontal circular path of radius R. The toy completes each revolution of its motion in a time period T. What is the magnitude of the acceleration of the toy (in terms of T, R, and g)?
[katex]\frac{1209}{1960} \approx .61 [/katex]
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.