## Supercharge UBQ with

0 attempts

0% avg

UBQ Credits

Verfied Explanation 0 likes
0

# Part (a)

Calculate Ashley’s constant speed for the first 4 minutes.

Step Derivation/Formula Reasoning
1 [katex] \Delta x = 800 [/katex] m Determine the displacement for the first 4 minutes from the graph; Ashley traveled 800 meters from 0 to 4 minutes.
2 [katex] \Delta t = 4 [/katex] min = [katex]4 \times 60[/katex] s = 240 s Convert the time duration from minutes to seconds, as the standard unit of velocity is m/s.
3 [katex] v = \frac{\Delta x}{\Delta t} = \frac{800 \text{ m}}{240 \text{ s}} [/katex] Use the formula for speed: speed equals displacement divided by time.
4 [katex] v = \frac{800}{240} \approx 3.33 \text{ m/s} [/katex] Calculate the speed by dividing distance by time.

# Part (b)

Calculate Ashley’s average speed for the entire trip.

Step Derivation/Formula Reasoning
1 [katex] \Delta x_{\text{total}} = 1600 [/katex] m Determine the total distance from the graph; Ashley traveled 1600 meters in total.
2 [katex] \Delta t_{\text{total}} = 10 [/katex] min = [katex]10 \times 60[/katex] s = 600 s Convert the total time duration from minutes to seconds.
3 [katex] v_{\text{avg}} = \frac{\Delta x_{\text{total}}}{\Delta t_{\text{total}}} = \frac{1600 \text{ m}}{600 \text{ s}} [/katex] Use the formula for average speed: total distance divided by total time.
4 [katex] v_{\text{avg}} = \frac{1400}{600} \approx 2.67 \text{ m/s} [/katex] Calculate the average speed by dividing total distance by total time.

# Part (c)

Calculate Ashley’s average velocity for the entire trip.

Step Derivation/Formula Reasoning
1 [katex] \Delta x_{\text{net}} = 1600 [/katex] m to the east. Determine the net displacement from the graph; In this case, both her distance and displacement are numerically the same.
2 [katex] \Delta t_{\text{total}} = 10 [/katex] min = [katex]10 \times 60[/katex] s = 600 s Convert the total time duration from minutes to seconds.
3 [katex] v_{\text{avg}} = \frac{\Delta x_{\text{net}}}{\Delta t_{\text{total}}} = \frac{1600 \text{ m}}{600 \text{ s}} [/katex] Use the formula for average velocity: total displacement divided by total time.
4 [katex] v_{\text{avg}} = \frac{1600}{600} \approx 2.67 \text{ m/s} \, \text{East} [/katex] Calculate the average velocity by dividing net displacement by total time.

# Part (d)

Determine how far Ashley was from her house when she stopped.

Step Derivation/Formula Reasoning
1 Read from Graph: [katex] \Delta x_{\text{stop}} = 800 [/katex] m Ashley stopped at 4 minutes, as shown by the horizontal line on the graph. The distance at this point was 800 meters.

## Need Help? Ask Phy To Explain This Problem

Phy can also check your working. Just snap a picture!

Phy Chat
Just Drag and Drop!

## See how Others Did on this question | Coming Soon

1. [katex] \approx 3.33 \text{ m/s} [/katex]
2. [katex] \approx 2.67 \text{ m/s} [/katex]
3. [katex] \approx 2.67 \text{ m/s} \, \text{East} [/katex]
4. [katex] 800 \, \text{m}[/katex]

## Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

## Error Report

Enjoying UBQ? Share the 🔗 with friends!

KinematicsForces
[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex][katex]F = ma[/katex]
[katex]v = v_i + at[/katex][katex]F_g = \frac{G m_1m_2}{r^2}[/katex]
[katex]a = \frac{\Delta v}{\Delta t}[/katex][katex]f = \mu N[/katex]
[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex]
Circular MotionEnergy
[katex]F_c = \frac{mv^2}{r}[/katex][katex]KE = \frac{1}{2} mv^2[/katex]
[katex]a_c = \frac{v^2}{r}[/katex][katex]PE = mgh[/katex]
[katex]KE_i + PE_i = KE_f + PE_f[/katex]
MomentumTorque and Rotations
[katex]p = m v[/katex][katex]\tau = r \cdot F \cdot \sin(\theta)[/katex]
[katex]J = \Delta p[/katex][katex]I = \sum mr^2[/katex]
[katex]p_i = p_f[/katex][katex]L = I \cdot \omega[/katex]
Simple Harmonic Motion
[katex]F = -k x[/katex]
[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex]
[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex]
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters.

1. Start with the given measurement: [katex]\text{5 km}[/katex]

2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

1. Some answers may be slightly off by 1% depending on rounding, etc.
2. Answers will use different values of gravity. Some answers use 9.81 m/s2, and other 10 m/s2 for calculations.
3. Variables are sometimes written differently from class to class. For example, sometime initial velocity [katex] v_i [/katex] is written as [katex] u [/katex]; sometimes [katex] \Delta x [/katex] is written as [katex] s [/katex].
4. Bookmark questions that you can’t solve so you can come back to them later.
5. Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

## Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

## \$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro