0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | $$ T_{1} – m_{1}g = m_{1}a $$ | This is Newton’s second law for mass \(m_{1}\) moving upward. |
2 | $$ m_{2}g – T_{2} = m_{2}a $$ | This is Newton’s second law for mass \(m_{2}\) moving downward. |
3 | $$ T_{1} = m_{1}g + m_{1}a \quad \text{and} \quad T_{2} = m_{2}g – m_{2}a $$ | Rearrange the equations to solve for the tensions in the string. |
4 | $$ (T_{2} – T_{1})R = I\left(\frac{a}{R}\right) $$ | This relates the net torque on the pulley to its moment of inertia \(I\) using the no‐slip condition \(\alpha = \frac{a}{R}\). |
5 | $$ T_{2} – T_{1} = \frac{I\,a}{R^{2}} $$ | Simplify the torque equation by dividing both sides by \(R\). |
6 | $$ (m_{2}g – m_{2}a) – (m_{1}g + m_{1}a) = $$$$(m_{2}-m_{1})g – (m_{2}+m_{1})a =$$$$\frac{I\,a}{R^{2}} $$ | Substitute the expressions for \(T_{1}\) and \(T_{2}\) into the torque equation. |
7 | $$ I = \frac{R^{2}}{a}\Bigl[(m_{2}-m_{1})g – (m_{2}+m_{1})a\Bigr] $$ | Rearrange the equation to solve for the moment of inertia \(I\). |
8 | $$ h = \frac{1}{2}at^{2} $$ | Use the kinematics relation for the heavy mass \(m_{2}\) falling a distance \(h\) from rest. |
9 | $$ a = \frac{2h}{t^{2}} $$ | Solve for the acceleration \(a\) from the kinematics equation. |
10 | $$ I = \frac{R^{2}}{\frac{2h}{t^{2}}}\Bigl[(m_{2}-m_{1})g – (m_{2}+m_{1})\frac{2h}{t^{2}}\Bigr] $$ | Substitute \(a = \frac{2h}{t^{2}}\) into the expression for \(I\). |
11 | $$ I = \frac{R^{2}t^{2}}{2h}\Bigl[(m_{2}-m_{1})g\Bigr] – R^{2}(m_{2}+m_{1}) $$ | Simplify the expression to obtain \(I\) solely in terms of \(m_{1}, m_{2}, R, h, t\) and \(g\). |
12 | $$ \boxed{I = \frac{R^{2}t^{2}}{2h}\Bigl[(m_{2}-m_{1})g\Bigr] – R^{2}(m_{2}+m_{1})} $$ | This is the final algebraic expression for the pulley’s moment of inertia. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | $$ \Delta x = R\theta $$ | This equation relates the linear displacement \(\Delta x\) to the angular displacement \(\theta\) of the pulley. |
2 | $$ h = R\theta $$ | Since the heavy mass \(m_{2}\) falls a distance \(h\), the length of the unwound rope is \(h\), which equals \(R\theta\). |
3 | $$ \theta = \frac{h}{R} $$ | Solve for the angular displacement \(\theta\) of the pulley. |
4 | $$ \boxed{\theta = \frac{h}{R}} $$ | This is the final expression for the total rotation of the pulley in radians. |
Just ask: "Help me solve this problem."
A wheel of radius R and negligible mass is mounted on a horizontal frictionless axle so that the wheel is in a vertical plane. Three small objects having masses [katex]m[/katex], [katex]M[/katex], and [katex]2M[/katex], respectively, are mounted on the rim of the wheel, as shown above. If the system is in static equilibrium, what is the value of [katex]m[/katex] in terms of [katex]M[/katex] ?
A solid sphere, solid cylinder, and a hollow pipe all have equal masses and radii. If the three of them are released simultaneously from the top of an inclined plane and do not slip, which one will reach the bottom first?
A 25 g steel ball is attached to the top of a 24-cm-diameter vertical wheel. Starting from rest, the wheel accelerates at [katex] 470 \, \frac{rad}{s^2}[/katex]. The ball is released after [katex]\frac{3}{4} [/katex] of a revolution. How high does it go above the center of the wheel?
A massless rigid rod of length [katex]3d[/katex] is pivoted at a fixed point [katex]W[/katex], and two forces each of magnitude [katex]F[/katex] are applied vertically upward as shown above. A third vertical force of magnitude [katex]F[/katex] may be applied, either upward or downward, at one of the labeled points. With the proper choice of direction at each point, the rod can be in equilibrium if the third force of magnitude [katex]F[/katex] is applied at point?
A horizontal uniform rod of length L and mass M is pivoted at one end and is initially at rest. A small ball of mass M (same masses) is attached to the other end of the rod. The system is released from rest. What is the angular acceleration of the rod just immediately after the system is released?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.