0 attempts
0% avg
| Derivation or Formula | Reasoning |
|---|---|
| \[W_{\text{air}} = \rho_{\text{rock}} V g\] | This is the full weight of the rock in air, where \(\rho_{\text{rock}}\) is the rock density, \(V\) is its volume, and \(g\) is gravitational acceleration. |
| \[W_{\text{water}} = \rho_{\text{rock}}Vg – \rho_{\text{water}}Vg\] | The apparent weight when submerged is the true weight minus the buoyant force, which equals the weight of the displaced water \((\rho_{\text{water}}Vg)\). |
| \[\rho_{\text{rock}}Vg – \rho_{\text{water}}Vg = \tfrac{1}{2}\,\rho_{\text{rock}}Vg\] | The problem states the rock weighs twice as much in air as in water, so \(W_{\text{water}} = \tfrac{1}{2}W_{\text{air}}\). Substitute \(W_{\text{air}}\) above. |
| \[\rho_{\text{rock}} – \rho_{\text{water}} = \tfrac{1}{2}\,\rho_{\text{rock}}\] | Canceling the common factors \(Vg\) from both sides simplifies the equation. |
| \[2\,\rho_{\text{rock}} – 2\,\rho_{\text{water}} = \rho_{\text{rock}}\] | Multiply both sides by 2 to clear the fraction. |
| \[\rho_{\text{rock}} = 2\,\rho_{\text{water}}\] | Solve for \(\rho_{\text{rock}}\) by subtracting \(\rho_{\text{rock}}\) from both sides. |
| \[\rho_{\text{rock}} = 2 \times 1000\,\text{kg/m}^3 = \boxed{2000\,\text{kg/m}^3}\] | Assuming the density of water is \(1000\,\text{kg/m}^3\), the rock density becomes \(2000\,\text{kg/m}^3\) (to 3 significant figures). |
| Derivation or Formula | Reasoning |
|---|---|
| \[\rho_{\text{avg}} = p\,\rho_{\text{quartz}} + (1-p)\times0 = p\,\rho_{\text{quartz}}\] | The rock is part solid quartz and part hollow (air). Since the density of air is negligible, \(\rho_{\text{avg}}\) is just the fraction \(p\) of quartz times the density of quartz \(\rho_{\text{quartz}}\). |
| \[p = \tfrac{\rho_{\text{avg}}}{\rho_{\text{quartz}}}\] | Solve for \(p\) (the fraction that is solid quartz) using the average density, which we determined as \(2000\,\text{kg/m}^3\), and the given quartz density \(2660\,\text{kg/m}^3\). |
| \[p = \tfrac{2000}{2660} \approx 0.752\] | Calculate \(p\) to determine the fraction of the rock that is quartz. |
| \[\text{Percentage hollow} = (1-p) \times 100\% \approx (1-0.752) \times 100\% \approx \boxed{24.8\%}\] | The remainder of the rock (\(1-p\)) is hollow. Converting to a percentage gives about 24.8\% hollow, to 3 significant figures. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
Suppose we wish to make a neutrally buoyant hollow sphere out of titanium (\(\rho = 4500 \text{kg/m}^3\)). If the sphere has an outer radius of \( 1.5 \) \( \text{m} \), what must be its inner radius?
In a carbonated drink dispenser, bubbles flow through a horizontal tube that gradually narrows in diameter. Assuming the change in height is negligible, which of the following best describes how the bubbles behave as they move from the wider section of the tube to the narrower section?

Water flows from point \( A \) to points \( D \) and \( E \) as shown. Some of the flow parameters are known, as shown in the table. Determine the unknown parameters. Note the diagram above does not show the relative diameters of each section of the pipe.
| Section | Diameter | Flow Rate | Velocity |
|---|---|---|---|
| \( \text{AB} \) | \( 300 \) \( \text{mm} \) | \(\textbf{?}\) | \(\textbf{?}\) |
| \( \text{BC} \) | \( 600 \) \( \text{mm} \) | \(\textbf{?}\) | \( 1.2 \) \( \text{m/s} \) |
| \( \text{CD} \) | \(\textbf{?}\) | \( Q_{CD} = 2Q_{CE} \) \( \text{m}^3/\text{s} \) | \( 1.4 \) \( \text{m/s} \) |
| \( \text{CE} \) | \( 150 \) \( \text{mm} \) | \( Q_{CE} = 0.5Q_{CD} \) \( \text{m}^3/\text{s} \) | \(\textbf{?}\) |
A drinking fountain projects water at an initial angle of \( 50^ \circ \) above the horizontal, and the water reaches a maximum height of \( 0.150 \) \( \text{m} \) above the point of exit. Assume air resistance is negligible.

The drawing above shows a spherical reservoir that contains \( 455,000 \) \( \text{kg} \) of water when full. The reservoir is vented to the atmosphere at the top. Assuming the reservoir is full and the diameter of the reservoir is much larger than any of the pipes on the ground.
A person is standing on a railroad station platform when a high-speed train passes by. The person will tend to be

Alcohol has a specific gravity of \( 0.79 \). If a barometer consisting of an open-ended tube placed in a dish of alcohol is used at sea level, to what height in the tube will the alcohol rise?
Water flowing in a horizontal pipe speeds up as it goes from a section with a large diameter to a section with a small diameter. Which of the following can explain why the speed of the water increases?

A pump, submerged at the bottom of a well that is \( 35 \) \( \text{m} \) deep, is used to pump water uphill to a house that is \( 50 \) \( \text{m} \) above the top of the well, as shown to the right. The density of water is \( 1000 \) \( \text{kg/m}^3 \). All pressures are gauge pressures. Neglect the effects of friction, turbulence, and viscosity.

The \( 70 \) \( \text{kg} \) student in the figure balances a \( 1200 \) \( \text{kg} \) elephant on a hydraulic lift. Assume that it is filled with oil, which is incompressible and has a density \( \rho = 900 \) \( \text{kg/m}^3 \). What is the diameter of the piston the student is standing on? Assume each piston has a cylindrical shape, i.e., a circular cross-sectional area. Note: The two pistons are at the same height. Also, the diameter of the wider piston is given in the figure to be \( 2.0 \) \( \text{m} \).
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?