to use all UBQ features!

Physics UBQ

Supercharge Your Learning with 1000+ AP Level Physics Problems
0%
Phy UBQ Count Message Here
Advanced
Mathematical
GQ

You are standing on a bathroom scale in an elevator. The elevator starts from rest on the first floor and accelerates up to the third floor, 12 meters above, in a time of 6 seconds. The scale reads 800N. What is the mass of the person?

Advanced
Mathematical
FRQ

The experimental diving rig is lowered from rest at the ocean’s surface and reaches a maximum depth of \(80\) \(\text{m}\). Initially it accelerates downward at a rate of \(0.10\) \(\text{m/s}^2\) until it reaches a speed of \(2.0\) \(\text{m/s}\), which then remains constant. During the descent, the pressure inside the bell remains constant at \(1\) atmosphere. The top of the bell has a cross-sectional area \(A = 9.0\) \(\text{m}^2\). The density of seawater is \(1025\) \(\text{kg/m}^3\).

Advanced
Mathematical
GQ

A person is standing at the edge of the water and looking out at the ocean. The height of the person’s eyes above the water is \( h = 1.8 \, \text{m} \), and the radius of the Earth is \( R = 6.38 \times 10^6 \, \text{m} \). How far is it to the horizon (in meters)? In other words, find the distance \( d \) from the person’s eyes to the horizon. Note at the horizon, the angle between the line of sight and the radius of the Earth is \( 90^\circ \).)

Intermediate
Mathematical
GQ

The cart with mass \( M = 3 \, \text{kg} \) is pulled by a massless string and moving on a horizontal track. A weight with mass \( m = 1 \, \text{kg} \) is hung from the other end of the string through a pulley system. Due to the gravitational force acting on the weight of mass \( m \), the cart is accelerated to the left. Find the tension in the string.

Intermediate
Mathematical
MCQ

Balsa wood with an average density of \( 130 \) \( \text{kg/m}^3 \), is floating in pure water. What percentage of the wood is submerged?

Intermediate
Mathematical
MCQ

What is the net torque acting on the pivot supporting a 10-kilogram beam 2 meters long as shown above? Assume that the positive direction is clockwise.

Advanced
Mathematical
GQ

A car is moving up the side of a circular roller coaster loop of radius \( 12 \) \( \text{m} \). The angular velocity is \( 1.8 \) \( \text{rad/s} \) and angular acceleration is \( -0.82 \) \( \text{rad/s}^2 \). The car is at the same elevation as the center of the loop. Find the magnitude and direction (relative to the horizontal) of the acceleration.

Intermediate
Conceptual
MCQ

A solid sphere \( \left( I = \frac{2}{5}MR^2 \right) \) and a solid cylinder \( \left( I = \frac{1}{2}MR^2 \right) \), both uniform and of the same mass and radius, roll without slipping at the same forward speed. It is correct to say that the total kinetic energy of the solid sphere is

Advanced
Conceptual
MCQ

A block is attached to a horizontal spring and is initially at rest at the equilibrium position \( x = 0 \), as shown in Figure \( 1 \). The block is then moved to position \( x = -A \), as shown in Figure \( 2 \), and released from rest, undergoing simple harmonic motion. At the instant the block reaches position \( x = +A \), another identical block is dropped onto and sticks to the block, as shown in Figure \( 3 \). The two–block–spring system then continues to undergo simple harmonic motion. Which of the following correctly compares the total mechanical energy \( E_{\text{tot},2} \) of the two–block–spring system after the collision to the total mechanical energy \( E_{\text{tot},1} \) of the one–block–spring system before the collision?

Beginner
Mathematical
MCQ

A liquid flows at a constant flow rate through a pipe with circular cross-sections of varying diameters. At one point in the pipe, the diameter is \(2\) \(\text{cm}\) and the flow speed is \(18\) \(\text{m/s}\). What is the flow speed at another point in this pipe, where the diameter is \(3\) \(\text{cm}\).

Advanced
Proportional Analysis
MCQ

At time \( t = 0 \), a disk starts from rest and begins spinning about its center with a constant angular acceleration of magnitude \( \alpha \). At time \( t_f \), the disk has angular speed \( \omega_f \). Which of the following expressions correctly compares the final angular displacement \( \theta_f \) of the disk at time \( t_f \) to the angular displacement \( \theta_{1/2} \) at time \( \frac{t_f}{2} \)?

Advanced
Conceptual
MCQ

A planet of constant mass orbits the sun in an elliptical orbit. Neglecting any friction effects, what happens to the planet’s rotational kinetic energy about the sun’s center?

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Sign In to View Your Questions

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.