To increase the moment of inertia of a body about an axis, you must
Which of the following graphs represent an object having zero acceleration?
If the acceleration of an object is \( 0 \), are no forces acting on it? Explain.
Determine the force needed to push a \( 150 \) \( \text{kg} \) body up a smooth \( 30^\circ \) incline with an acceleration of \( 6 \) \( \text{m/s}^2 \).

A disk of radius \( R = 0.5 \) \( \text{cm} \) rests on a flat, horizontal surface such that frictional forces are considered to be negligible. Three forces of unknown magnitude are exerted on the edge of the disk, as shown in the figure. Which of the following lists the essential measuring devices that, when used together, are needed to determine the change in angular momentum of the disk after a known time of \( 5.0 \) \( \text{s} \)?
A \(10 \, \text{meter}\) long pendulum on the earth, is set into motion by releasing it from a maximum angle of less than \(10^\circ\) relative to the vertical. At what time \(t\) will the pendulum have fallen to a perfectly vertical orientation?
A helicopter is ascending vertically with a speed of \( 5.40 \) \( \text{m/s} \). At a height of \( 105 \) \( \text{m} \) above the Earth, a package is dropped from the helicopter. How much time does it take for the package to reach the ground?
A \(90 \, \text{kg}\) individual is cycling up a hill inclined at \(30^\circ\) on a \(12 \, \text{kg}\) bicycle. The hill is quite steep, and the coefficient of static friction is \(0.85\). The cyclist ascends \(12 \, \text{m}\) up the hill and then pauses at the summit. They then start descending from rest and travel \(9 \, \text{m}\) before firmly applying the brakes, causing the wheels to lock.

A uniform, rigid rod of length \( 2 \) \( \text{m} \) lies on a horizontal surface. One end of the rod can pivot about an axis that is perpendicular to the rod and along the plane of the page. A \( 10 \) \( \text{N} \) force is applied to the rod at its midpoint at an angle of \( 37^{\circ} \). A second force \( F \) is applied to the free end of the rod so that the rod remains at rest, as shown in the figure. The magnitude of the torque produced by force \( F \) is most nearly
A projectile is launched at an angle of \( 30^{\circ} \) and hits a vertical wall \( 40 \) \( \text{m} \) away. After bouncing back horizontally, it lands \( 15 \) \( \text{m} \) behind the launch point. How high up on the wall did the projectile strike?
Two objects (49.0 and 24.0 kg) are connected by a massless string that passes over a massless, frictionless pulley. The pulley hangs from the ceiling. Find the acceleration of the objects and the tension in the string.
You are adding vectors of length \( 20 \) and \( 40 \) units. Which of the following choices is a possible resultant magnitude?
A car is moving up the side of a circular roller coaster loop of radius \( 12 \) \( \text{m} \). The angular velocity is \( 1.8 \) \( \text{rad/s} \) and angular acceleration is \( -0.82 \) \( \text{rad/s}^2 \). The car is at the same elevation as the center of the loop. Find the magnitude and direction (relative to the horizontal) of the acceleration.

The elliptical orbit of a comet is shown above. Positions \(1\) and \(2\) are, respectively, the farthest and nearest positions to the Sun, and at position \(1\) the distance from the comet to the Sun is \(10\) times that at position \(2\). What is the ratio \(\dfrac{F_1}{F_2}\), the force on the comet at position \(1\) to the force on the comet at position \(2\)?
In archery, should the arrow be aimed directly at the target? How should your angle of aim depend on the distance to the target? Explain without using equations.
Consider a solid uniform sphere of radius \(R\) and mass \(M\) rolling without slipping. Which form of its kinetic energy is larger, translational or rotational?
A space probe far from the Earth is traveling at 14.8 km/s. It has mass 1312 kg. The probe fires its rockets to give a constant thrust of 156 kN for 220 seconds. It accelerates in the same direction as its initial velocity. In this time it burns 150 kg of fuel. Calculate final speed of the space probe in km/s.
Note: This is a bonus question. Skip if you haven’t yet taken calculus.
A stone is thrown vertically upwards with a speed of \( 20.0 \) \( \text{m/s} \). How fast is it moving when it reaches a height of \( 12.0 \) \( \text{m} \)?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.