0 attempts
0% avg
UBQ Credits
Find the find the distance traveled by the plane and divide it by speed of the plane to get the time of travel.
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex] a_{\text{centripetal}} = 8g [/katex] | Maximum safe centripetal acceleration is 8 times the acceleration due to gravity ([katex] g [/katex]). |
2 | [katex] a_{\text{centripetal}} = \frac{v^2}{r} [/katex] | Centripetal acceleration formula, where [katex] v [/katex] is velocity and [katex] r [/katex] is the radius of the turn. |
3 | [katex] r = \frac{v^2}{a_{\text{centripetal}}} [/katex] | Rearranging the formula to find the radius of the turn. |
4 | [katex] \theta = \frac{s}{r} [/katex] | Relationship between angular displacement ([katex] \theta [/katex] in radians), arc length ([katex] s [/katex]), and radius ([katex] r [/katex]). |
5 | [katex] s = \pi r [/katex] | For a 180° turn, [katex] \theta = \pi [/katex] radians, so [katex] s = \pi r [/katex]. |
6 | [katex] t = \frac{s}{v} [/katex] | Time formula, where [katex] t [/katex] is time, [katex] s [/katex] is distance (arc length in this case), and [katex] v [/katex] is velocity. |
7 | [katex] t = \frac{\pi r}{v} [/katex] | Substituting [katex] s [/katex] with [katex] \pi r [/katex]. |
We will now calculate the time it takes for the airplane to make the 180° turn.
Step | Formula Derivation | Reasoning |
---|---|---|
8 | [katex] t \approx 16.01 , \text{s} [/katex] | Calculated time for the 180° turn. |
The time it takes for the airplane to make a 180° turn at a constant speed of 400 m/s, subjected to a centripetal acceleration of 8 g’s, is approximately [katex] \boxed{16.01 , \text{seconds}} [/katex].
Phy can also check your working. Just snap a picture!
Two identical object rests on a platform rotating at constant speed. Object A is at distance of half the platform’s radius from the center. Object B lays at edge of the platform. Assuming the platform continues rotating at the same speed, how does the centripetal force of the two objects compare?
A delivery truck is traveling north. It then turns along a leftward circular curve. This the packages in the truck to slide to the RIGHT. Which of the following is true of the net force on the packages as they are sliding?
A compressed spring mounted on a disk can project a small ball. When the disk is not rotating, as shown in the top view above, the ball moves radially outward. The disk then rotates in a counterclockwise direction as seen from above, and the ball is projected outward at the instant the disk is in the position shown above. Which of the following best shows the subsequent path of the ball relative to the ground?
A neighbor’s child wants to go to a carnival to experience the wild rides. The neighbor is worried about safety because one of the rides looks particularly dangerous. She knows that you have taken physics and so asks you for advice.
The ride in question has a 4 kg chair which hangs freely from a 10 m long chain attached to a pivot on the top of a tall tower. When the child enters the ride, the chain is hanging straight down. The child is then attached to the chair with a seat belt and shoulder harness. When the ride starts up, the chain rotates about the tower. Soon the chain reaches its maximum speed and remains rotating at that speed, which corresponds to one rotation about the tower every 3 seconds.
When you ask the operator, he says the ride is perfectly safe. He demonstrates this by sitting in the stationary chair. The chain creaks but holds, and he weighs 90 kg.
The ultracentrifuge is an important tool for separating and analyzing proteins. Because of the enormous centripetal accelerations, the centrifuge must be carefully balanced, with each sample matched by a sample of identical mass on the opposite side. Any difference in the masses of opposing samples creates a net force on the shaft of the rotor, potentially leading to a catastrophic failure of the apparatus. Suppose a scientist makes a slight error in sample preparation and one sample has a mass 10 mg larger than the opposing sample.
If the samples are 12 cm from the axis of the rotor and the ultracentrifuge spins at 60000 rpm, what is the magnitude of the net force on the rotor due to the unbalanced samples?
16.01 seconds
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex] | [katex]F = ma[/katex] |
[katex]v = v_i + at[/katex] | [katex]F_g = \frac{G m_1m_2}{r^2}[/katex] |
[katex]a = \frac{\Delta v}{\Delta t}[/katex] | [katex]f = \mu N[/katex] |
[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex] |
Circular Motion | Energy |
---|---|
[katex]F_c = \frac{mv^2}{r}[/katex] | [katex]KE = \frac{1}{2} mv^2[/katex] |
[katex]a_c = \frac{v^2}{r}[/katex] | [katex]PE = mgh[/katex] |
[katex]KE_i + PE_i = KE_f + PE_f[/katex] |
Momentum | Torque and Rotations |
---|---|
[katex]p = m v[/katex] | [katex]\tau = r \cdot F \cdot \sin(\theta)[/katex] |
[katex]J = \Delta p[/katex] | [katex]I = \sum mr^2[/katex] |
[katex]p_i = p_f[/katex] | [katex]L = I \cdot \omega[/katex] |
Simple Harmonic Motion |
---|
[katex]F = -k x[/katex] |
[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex] |
[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex] |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
UBQ credits are specifically used to grade your FRQs and GQs.
You can still view questions and see answers without credits.
Submitting an answer counts as 1 attempt.
Seeing answer or explanation counts as a failed attempt.
Lastly, check your average score, across every attempt, in the top left.
MCQs are 1 point each. GQs are 1 point. FRQs will state points for each part.
Phy can give partial credit for GQs & FRQs.
Phy sees everything.
It customizes responses, explanations, and feedback based on what you struggle with. Try your best on every question!
Understand you mistakes quicker.
For GQs and FRQs, Phy provides brief feedback as to how you can improve your answer.
Aim to increase your understadning and average score with every attempt!
10 Free Credits To Get You Started
*Phy Pro members get unlimited credits
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.