0 attempts
0% avg
UBQ Credits
Velocity just after the collision
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]m_1v_1 + m_2v_2 = (m_1 + m_2)v'[/katex] | Conservation of momentum, where [katex]m_1[/katex] and [katex]m_2[/katex] are the masses of the bullet and block, [katex]v_1[/katex] and [katex]v_2[/katex] are their initial velocities, and [katex]v'[/katex] is their final velocity. |
2 | [katex]v’ = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}[/katex] | Solve for [katex]v'[/katex]. Given: [katex]m_1 = 0.0350 , \text{kg}, v_1 = 425 , \text{m/s}, m_2 = 0.550 , \text{kg}, v_2 = 0 , \text{m/s}[/katex]. |
3 | [katex]v’ = 25.43 , \text{m/s}[/katex] | The velocity just after the collision |
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]v^2 = v’^2 + 2ad[/katex] | Kinematic equation for motion under constant acceleration, where [katex]v[/katex] is the final velocity, [katex]v'[/katex] is the initial velocity, [katex]a[/katex] is acceleration, and [katex]d[/katex] is the distance. |
2 | [katex]a = -\mu_k g[/katex] | Acceleration due to kinetic friction, where [katex]\mu_k[/katex] is the coefficient of kinetic friction and [katex]g[/katex] is the acceleration due to gravity (approximately [katex]9.81 , \text{m/s}^2[/katex]). Given: [katex]\mu_k = 0.40[/katex]. |
3 | [katex]v = \sqrt{v’^2 + 2ad}[/katex] | Solve for [katex]v[/katex]. Given: [katex]v’ = 25.43 , \text{m/s}, d = 10.0 , \text{m}[/katex]. |
4 | [katex]v = 23.84 , \text{m/s}[/katex] | Velocity after sliding 10.0 meters |
Distance traveled by the combined system (2 blocks and the bullet)
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]m_1v_1 + m_2v_2 = (m_1 + m_2)v'[/katex] | Conservation of momentum for the collision between the bullet-block system and the second block, where [katex]m_1[/katex] and [katex]v_1[/katex] are the mass and velocity of the bullet-block system, [katex]m_2[/katex] and [katex]v_2[/katex] are the mass and velocity of the second block, and [katex]v'[/katex] is the final velocity of the combined system. |
2 | [katex]v’ = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}[/katex] | Solve for [katex]v'[/katex]. Given: [katex]m_1 = 0.585 , \text{kg}, v_1 = 23.84 , \text{m/s}, m_2 = 2.50 , \text{kg}, v_2 = 0 , \text{m/s}[/katex]. |
3 | [katex]0 = v’^2 + 2ad[/katex] | Kinematic equation for motion under constant acceleration when the final velocity is 0. |
4 | [katex]d = \frac{-v’^2}{2a}[/katex] | Solve for [katex]d[/katex]. The acceleration [katex]a[/katex] remains [katex]-\mu_k g[/katex] as before. |
5 | [katex]v’ = 4.52 , \text{m/s}[/katex] | Final velocity of the combined system after the second collision |
6 | [katex]d = 2.60 , \text{m}[/katex] | Distance traveled by the combined system before stopping. |
Phy can also check your working. Just snap a picture!
Two blocks connected to a compressed spring move right at speed v. After releasing the spring, the left block moves left at speed [katex] v_2 [/katex], the right block moves right. What is the center speed of the blocks then?
An object is projected vertically upward from ground level. It rises to a maximum height [katex] H [/katex]. If air resistance is negligible, which of the following must be true for the object when it is at a height [katex] H/2 [/katex] ?
The diagram above shows a marble rolling down an incline, the bottom part of which has been bent into a loop. The marble is released from point A at a height of 0.80 m above the ground. Point B is the lowest point and point C the highest point of the loop. The diameter of the loop is 0.35 m. The mass of the marble is 0.050 kg. Friction forces and any gain in kinetic energy due to the rotating of the marble can be ignored. When answering the following questions, consider the marble when it is at point C.
A child pushes horizontally on a box of mass m with constant speed v across a rough horizontal floor. The coefficient of friction between the box and the floor is µ. At what rate does the child do work on the box?
A 0.4 kg object is attached to a horizontal spring undergoes SHM with the total energy of 0.2 J. The potential energy as a function of position presented by the graph.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex] | [katex]F = ma[/katex] |
[katex]v = v_i + at[/katex] | [katex]F_g = \frac{G m_1m_2}{r^2}[/katex] |
[katex]a = \frac{\Delta v}{\Delta t}[/katex] | [katex]f = \mu N[/katex] |
[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex] |
Circular Motion | Energy |
---|---|
[katex]F_c = \frac{mv^2}{r}[/katex] | [katex]KE = \frac{1}{2} mv^2[/katex] |
[katex]a_c = \frac{v^2}{r}[/katex] | [katex]PE = mgh[/katex] |
[katex]KE_i + PE_i = KE_f + PE_f[/katex] |
Momentum | Torque and Rotations |
---|---|
[katex]p = m v[/katex] | [katex]\tau = r \cdot F \cdot \sin(\theta)[/katex] |
[katex]J = \Delta p[/katex] | [katex]I = \sum mr^2[/katex] |
[katex]p_i = p_f[/katex] | [katex]L = I \cdot \omega[/katex] |
Simple Harmonic Motion |
---|
[katex]F = -k x[/katex] |
[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex] |
[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex] |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
UBQ credits are specifically used to grade your FRQs and GQs.
You can still view questions and see answers without credits.
Submitting an answer counts as 1 attempt.
Seeing answer or explanation counts as a failed attempt.
Lastly, check your average score, across every attempt, in the top left.
MCQs are 1 point each. GQs are 1 point. FRQs will state points for each part.
Phy can give partial credit for GQs & FRQs.
Phy sees everything.
It customizes responses, explanations, and feedback based on what you struggle with. Try your best on every question!
Understand you mistakes quicker.
For GQs and FRQs, Phy provides brief feedback as to how you can improve your answer.
Aim to increase your understadning and average score with every attempt!
10 Free Credits To Get You Started
*Phy Pro members get unlimited credits
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.