A person’s back is against the inner wall of a spinning cylinder with no support under their feet. If the radius is \(R\), find an expression for the minimum angular speed so the person does not slide down the wall. The coefficient of static friction is \(\mu_s\).
If you haven’t studied angular velocity \(\omega\) yet, just find the minumum linear velocity \(v\).
Which graph below shows that one of the runners started 10 meters further ahead of the other? Assume the y-axis is measured in meters and the x-axis is measured in seconds.
An object moves at constant speed in a circular path of radius \( r \) at a rate of \( 1 \) revolution per second. What is its acceleration in terms of \(r\)?
A block of mass \( m \) is attached to a horizontal spring with spring constant \( k \) and undergoes simple harmonic motion with amplitude \( A \) along the \( x \)-axis. Which of the following equations could represent the position \( x \) of the object as a function of time?
Two objects, \( A \) and \( B \), move toward one another. Object \( A \) has twice the mass and half the speed of object \( B \). Which of the following describes the forces the objects exert on each other when they collide and provides the best explanation?
Why do you float higher in salt water than in fresh water?
A \( 7.3 \) \( \text{kg} \) mass is placed on a spring with a spring constant of \( 34 \) \( \text{N/cm} \). How much does this stretch the spring?
Riders in a carnival ride stand with their backs against the wall of a circular room of diameter \(8.0 \, \text{m}\). The room is spinning horizontally about an axis through its center at a rate of \(45 \, \text{rev/min}\) when the floor drops so that it no longer provides any support for the riders. What is the minimum coefficient of static friction between the wall and the rider required so that the rider does not slide down the wall?
A ball of mass \(m\) is released from rest at a distance \(h\) above a frictionless plane inclined at an angle of \(45^\circ\) to the horizontal as shown above. The ball bounces horizontally off the plane at point \(P_1\) with the same speed with which it struck the plane and strikes the plane again at point \(P_2\). In terms of \(g\) and \(h\), determine each of the following quantities:
A group of astronauts in a spaceship are attempting to land on Mars. As they approach the planet, they begin to plan their descent to the surface.
An object of mass \( m = 3.0 \) \( \text{kg} \) is attached to one end of a string with negligible mass and length \( L = 0.80 \) \( \text{m} \). The object is released from rest at time \( t = 0 \), when the string is horizontal. At time \( t = t_1 \) the object is at the location shown in the figure, where the string is vertical. Which of the following is most nearly the magnitude of the tension in the string at time \( t = t_1 \)?
The graph in the figure shows the position of a particle as it travels along the x-axis. At what value of \(t\) is the speed of the particle equal to \(0 \, \text{m/s}\)?
note that the slope of position vs time is velocity. And the graph most closely reemsbles a flat or 0 slope at 3 seconds
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.