A 6.0-cm-diameter gear rotates with angular velocity \( \omega = \left(20-\frac {1}{2} t^2 \right) \, \text {rad/s} \), where \(t\) is in seconds. At \(t = 4.0 \, \text{s}\), what are
For an object oscillating in SHM, what is the relationship between its displacement, velocity, and acceleration graphs as a function of time?
Two thin coins are made from identically the same metal, but one coin has triple the diameter of the other. What is the ratio of the moment of inertia of the large coin compared to the small coin? Take the axis of rotation to be perpendicular to the coin and through its center; assume that the coins have the same thickness. Hint: The moment of inertia of a solid disk about its center is \(\frac{1}{2} M R^{2}\).
A seagull first flies \( 160 \, \text{m} \) North, then heads \( 120.65 \, \text{m} \) at \( 18.43^\circ \) North of West. After it lands:
A pair of fuzzy dice is hanging by a string from your rearview mirror. You speed up from a stoplight. During the acceleration, the dice do not move vertically; the string makes an angle of \( 22^\circ \) with the vertical. The dice have a mass of \( 0.10 \, \text{kg} \). Determine the acceleration.
A fountain with an opening of radius \( 0.015 \) \( \text{m} \) shoots a stream of water vertically from ground level at \( 6.0 \) \( \text{m/s} \). The density of water is \( 1000 \) \( \text{kg/m}^3 \).
A cat chases a mouse across a \(1.0 \, \text{m}\) high table. The mouse steps out of the way, and the cat slides off the table and strikes the floor \(2.2 \, \text{m}\) from the edge of the table. When the cat slid off the table, what was its speed?

Two wires support an unknown mass as shown in the diagram. The tension in the left wire is measured to be \( 17.5 \) \( \text{N} \) and the tension in the right wire is \( 30.3 \) \( \text{N} \). The left wire makes an angle of \( 30^{\circ} \) with the horizontal, and the right wire makes an angle of \( 60^{\circ} \) with the horizontal. What is the mass of the object?
A 135.0 N force is applied to a 30.0 kg box at 42 degree angle to the horizontal. If the force of friction is 85.0, what is the net force and acceleration? If the object starts from rest, how far has it traveled in 3.3 sec?
A skater glides across the ice at a constant \( 6 \) \( \text{m/s} \). After \( 4 \) \( \text{s} \), friction gradually slows them down until they come to rest in \( 6 \) \( \text{s} \). They pause for \( 2 \) \( \text{s} \), then push off in the opposite direction, steadily gaining speed for \( 5 \) \( \text{s} \). Draw the velocity vs. time graph.

Block 2 initially is at rest. Block 1 travels towards block 2 and collides with Block 2 as shown above. Find the final velocities of both blocks assuming the collision is elastic.
A ball is thrown straight up. At what point does the ball have the most energy?
The driver of a car traveling at \( 30.0 \) \( \text{m/s} \) applies the brakes and undergoes a constant negative acceleration of \( 2.00 \) \( \text{m/s}^2 \). How many revolutions does each tire make before the car comes to a stop, assuming that the car does not skid and that the tires have radii of \( 0.300 \) \( \text{m} \)?

Shown above are three masses of \(6 \, \text{kg}\), \(3 \, \text{kg}\), and \(1 \, \text{kg}\) (in order from left to right). You pull on the 1kg mass with a force \(F\) of \(15 \, \text{N}\) along a frictionless surface.
A windmill blade with a rotational inertia of \( 6.0 \) \( \text{kg} \cdot \text{m}^2 \) has an initial angular velocity of \( 8 \) \( \text{rad/s} \) in the clockwise direction. It is then given an angular acceleration of \( 4 \) \( \text{rad/s}^2 \) in the clockwise direction for \( 10 \) seconds. What is the change in rotational kinetic energy of the blade over this time interval?
If the coefficient of static friction is \( \mu_s = 0.5 \), how much force must be applied to a spring (spring constant of \( 0.8 \) \( \text{N/m} \)) which is attached to a block of wood (mass \( 4.0 \) \( \text{kg} \)) in order to just begin to move the block?

The box in the diagram is sliding to the right across a horizontal table, under the influence of the forces shown. Which force(s) is doing negative work on the box?
A race car travels in a circular track of radius \( 200 \) \( \text{m} \). If the car moves with a constant speed of \( 80 \) \( \text{m/s} \),
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.