If I weigh \( 741 \) \( \text{N} \) on Earth at a place where \( g = 9.80 \) \( \text{m/s}^2 \) and \( 5320 \) \( \text{N} \) on the surface of another planet, what is the acceleration due to gravity on that planet?

An object of mass \( m = 3.0 \) \( \text{kg} \) is attached to one end of a string with negligible mass and length \( L = 0.80 \) \( \text{m} \). The object is released from rest at time \( t = 0 \), when the string is horizontal. At time \( t = t_1 \) the object is at the location shown in the figure, where the string is vertical. Which of the following is most nearly the magnitude of the tension in the string at time \( t = t_1 \)?
A projectile is launched at angle \( \theta \) to the horizontal, with velocity \( v \), maximum vertical displacement \( s \), and angle \( \theta \) between \( 0^{\circ} \) and \( 45^{\circ} \). What will the maximum vertical displacement be if the projectile is now launched at an angle of \( 2 \theta \) from the horizontal with velocity \( v \)?
An old record player could bring a disk up to its \(45\) RPM speed in less than a second. If the same size disk can also be brought up to a speed of \(75\) RPM in about the same amount of time on another player. Compare the torques exerted by each record player.
A satellite circling Earth completes each orbit in \(132 \, \text{minutes}\).
You are adding vectors of length \( 20 \) and \( 40 \) units. Which of the following choices is a possible resultant magnitude?
An experimenter has a simple pendulum of length \( L \) and a mass–spring system with mass \( m \) and spring constant \( k \). Both are found to have the same period of oscillation \( T \) on Earth. If both systems are taken to the Moon, where the acceleration due to gravity is approximately \( \frac{1}{6} g \) of Earth, what will happen to their periods?
A big bird has a mass of about 0.021 kg. Suppose it does 0.36 J of work against gravity, so that it ascends straight up with a net acceleration of 0.625 m/s2. How far up does it move?

A system of two wheels fixed to each other is free to rotate about a frictionless axis through the common center of the wheels and perpendicular to the page. Four forces are exerted tangentially to the rims of the wheels, as shown in the figure. The magnitude of the net torque on the system about the axis is
Two objects are dropped from rest from the same height. Object \( A \) falls through a distance \( d_A \) during a time \( t \), and object \( B \) falls through a distance \( d_B \) during a time \( 2t \). If air resistance is negligible, what is the relationship between \( d_A \) and \( d_B \)?

A \( 50 \, \text{kg} \) person is sitting on a seesaw \( 1.2 \, \text{m} \) from the balance point. On the other side, a \( 70 \, \text{kg} \) person is balanced. How far from the balance point is the second person sitting?
What force would have to be applied to start a \(12.3 \, \text{kg}\) wood block moving on a surface with a static coefficient of friction of \(0.438\)?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.