The two blocks of masses \( M \) and \( 2M \) travel at the same speed \( v \) but in opposite directions. They collide and stick together. How much mechanical energy is lost to other forms of energy during the collision?
From the top of a \( 74.0 \) \( \text{m} \) high building, a \( 1.00 \) \( \text{kg} \) ball is dropped in the presence of air resistance. The ball reaches the ground with a speed of \( 31.0 \) \( \text{m/s} \), indicating that drag was significant. How much energy was lost in the form of air resistance/drag during the fall?
Three forces of equal magnitude are applied to a \( 3 \)-m by \( 2 \)-m rectangle. Force \( F_1 \) and \( F_2 \) act at \( 45^\circ \) angles to the vertical as shown, while \( F_3 \) acts horizontally.
During projectile motion (neglecting air resistance), what is the vertical acceleration at the highest point, assuming the initial velocity is upwards in the positive direction?
A centrifuge in a medical laboratory is rotating at an angular speed of \( 3600 \) \( \text{rev/min} \). When switched off, it rotates \( 50.0 \) times before coming to rest. Find the constant angular deceleration of the centrifuge.
An object is suspended from a spring scale first in air, then in water, as shown in the figure above. The spring scale reading in air is \( 17.8 \) \( \text{N} \), and the spring scale reading when the object is completely submerged in water is \( 16.2 \) \( \text{N} \). The density of water is \( 1000 \) \( \text{kg/m}^3 \).
A net torque is applied to the edge of a spinning object as it rotates about its internal axis. The table shows the net torque exerted on the object at different instants in time. How can a student use the data table to determine the change in angular momentum of the object from \( 0 \) to \( 6 \) \( \text{s} \)? Justify your selection.
Time \( (\text{s}) \) | Net Torque \( (\text{N} \cdot \text{m}) \) |
---|---|
0 | 0 |
2 | 1.5 |
4 | 3.0 |
6 | 4.5 |
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it is true to say that
Suppose we wish to make a neutrally buoyant hollow sphere out of titanium (\(\rho = 4500 \text{kg/m}^3\)). If the sphere has an outer radius of \( 1.5 \) \( \text{m} \), what must be its inner radius?
Three identical reservoirs, \(A\), \(B\), and \(C\), are represented above, each with a small pipe where water exits horizontally. The pipes are set at the same height above a pool of water. The water in the reservoirs is kept at the levels shown. Which of the following correctly ranks the horizontal distances \( d \) that the streams of water travel before hitting the surface of the pool?
An object weighs \( 300 \, \text{N} \) on Earth and \( 50 \, \text{N} \) on the Moon. Does the object have less inertia on the Moon?
A projectile is launched at \( 25 \) \( \text{m/s} \) at an angle of \( 37^{\circ} \). It lands on a platform that is \( 5.0 \) \( \text{m} \) above the launch height.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.