AP Physics

Unit 8 - Fluids

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Part (a): Tension in the String

Step Derivation or Formula Reasoning
1 [\displaystyle F_{B}=\rho_{\text{air}}\,V\,g] Compute the buoyant force where \(\rho_{\text{air}}=1.29\,\text{kg/m}^3\), \(V=325\,\text{m}^3\), and \(g=9.8\,\text{m/s}^2\).
2 [\displaystyle F_{B}=1.29\times325\times9.8] Substitute the given values to evaluate the buoyant force.
3 [\displaystyle F_{B}\approx4108.65\,\text{N}] Resulting upward force due to buoyancy.
4 [\displaystyle m_{He}=\rho_{He}\,V] Calculate the mass of helium inside the balloon using \(\rho_{He}=0.179\,\text{kg/m}^3\) and \(V=325\,\text{m}^3\).
5 [\displaystyle m_{He}=0.179\times325\approx58.175\,\text{kg}] Evaluate the helium mass.
6 [\displaystyle m_{\text{total}}=226+58.175] Add the balloon envelope mass (226 kg) and the helium mass to get the total mass.
7 [\displaystyle m_{\text{total}}\approx284.175\,\text{kg}] Computed total mass of the balloon system.
8 [\displaystyle W=m_{\text{total}}\,g] Calculate the weight of the balloon system.
9 [\displaystyle W\approx284.175\times9.8\approx2783.515\,\text{N}] Evaluate the downward gravitational force.
10 [\displaystyle T=F_{B}-W] For equilibrium, the tension in the string balances the net upward force.
11 [\displaystyle T\approx4108.65-2783.515\approx1325.135\,\text{N}] Calculate the magnitude of the tension in the string.
12 [\displaystyle \boxed{T\approx1325\,\text{N}}] Final answer for part (a); the string must exert approximately 1325 N downward.

Part (b): Vertical Acceleration with Basket

Step Derivation or Formula Reasoning
1 [\displaystyle m_{\text{basket}}=95.5\,\text{kg}] Identify the mass of the basket added to the system.
2 [\displaystyle m_{\text{new}}=m_{\text{total}}+m_{\text{basket}}] Add the basket mass to the previous total mass of the balloon system.
3 [\displaystyle m_{\text{new}}\approx284.175+95.5\approx379.675\,\text{kg}] Computed overall mass of the balloon with the basket.
4 [\displaystyle W_{\text{new}}=m_{\text{new}}\,g] Calculate the total weight of the new system.
5 [\displaystyle W_{\text{new}}\approx379.675\times9.8\approx3719.415\,\text{N}] Determine the downward gravitational force for the combined mass.
6 [\displaystyle F_{\text{net}}=F_{B}-W_{\text{new}}] Find the net upward force acting on the system; note that \(F_{B}\) remains unchanged.
7 [\displaystyle F_{\text{net}}\approx4108.65-3719.415\approx389.235\,\text{N}] Evaluate the net force after adding the basket.
8 [\displaystyle a=\frac{F_{\text{net}}}{m_{\text{new}}}] Determine the acceleration using Newton’s second law \(F=ma\).
9 [\displaystyle a\approx\frac{389.235}{379.675}\approx1.0248\,\text{m/s}^2] Calculate the magnitude of the vertical acceleration.
10 [\displaystyle \boxed{a\approx1.02\,\text{m/s}^2\text{ upward}}] Final answer for part (b); the acceleration is approximately 1.02 m/s² upward.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. \(1325\text{ N downward}\)
  2. \(1.02\text{ m/s}^2 upward\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.