A truck going \(15 \, \text{km/h}\) has a head-on collision with a small car going \(30 \, \text{km/h}\). Which statement best describes the situation?
A car of mass \( M \) moves around a circularly banked curve on a freeway off-ramp. The off-ramp has a radius of curvature \( R \) and is raised to an angle \( \theta \) from the horizontal. The road is slick, and friction is negligible.
A \(70 \, \text{kg}\) woman and her \(35 \, \text{kg}\) son are standing at rest on an ice rink. They push against each other for a time of \(0.60 \, \text{s}\), causing them to glide apart. The speed of the woman immediately after they separate is \(0.55 \, \text{m/s}\). Assume that during the push, friction is negligible compared with the forces the people exert on each other.
A motorcycle has tires with a diameter of \( 44.0 \) \( \text{cm} \). Cruising down the highway, they are rotating at \( 1150 \) \( \text{rpm} \) (revolutions per minute).
A mass is attached to a spring of spring constant 60 N/m along a horizontal, frictionless surface. The spring is initially stretched by a force of 5.0 N and let go. It takes the mass 0.50 s to go back to its equilibrium position when it is oscillating. What is the amplitude?

The figure shows a truck pulling three crates across a rough road. Which of the following best describes the directions of all the horizontal forces acting on crate 2?

A super dart of mass \(20 \, \text{g}\), traveling at \(350 \, \text{m/s}\), strikes a steel plate at an angle of \(30^\circ\) with the plane of the plate, as shown in the figure. It bounces off the plate at the same angle but at a speed of \(320 \, \text{m/s}\). What is the magnitude of the impulse that the plate gives to the bullet?
A \( 200 \)\( \text{ lb} \) block is resting on a \( 30^{\circ} \) incline. The coefficient of static friction between the block and the plane is \( \mu_s = 0.8 \). Will the block remain at rest?
A 6.0-cm-diameter gear rotates with angular velocity \( \omega = \left(20-\frac {1}{2} t^2 \right) \, \text {rad/s} \), where \(t\) is in seconds. At \(t = 4.0 \, \text{s}\), what are
A rubber ball and a lump of clay have equal mass. They are thrown with equal speed against a wall. The ball bounces back with nearly the same speed with which it hit. The clay sticks to the wall. Which one of these objects experiences the greater impulse?
When a fan is turned off, its angular speed decreases from \( 10 \) \( \text{rad/s} \) to \( 6.3 \) \( \text{rad/s} \) in \( 5.0 \) \( \text{s} \). What is the magnitude of the average angular acceleration of the fan?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.