A car is driving at \(25 \, \text{m/s}\) when a light turns red \(100 \, \text{m}\) ahead. The driver takes an unknown amount of time to react and hit the brakes, but manages to skid to a stop at the red light. If \(\mu_s = 0.9\) and \(\mu_k = 0.65\), what was the reaction time of the driver?
At time \( t = 0 \), a disk starts from rest and begins spinning about its center with a constant angular acceleration of magnitude \( \alpha \). At time \( t_f \), the disk has angular speed \( \omega_f \). Which of the following expressions correctly compares the final angular displacement \( \theta_f \) of the disk at time \( t_f \) to the angular displacement \( \theta_{1/2} \) at time \( \frac{t_f}{2} \)?
A ice skater that is spinning in circles has an initial rotational inertia Ii. You can approximate her shape to be a cylinder. She is spinning with velocity ωi. As she extends her arms she her rotational inertia changes by a factor of x and her angular velocity changes by a factor of y. Which one of the following options best describe x and y.

A fluid flows through the two sections of cylindrical pipe shown in the figure. The narrow section of the pipe has radius \( R \) and the wide section has radius \( 2R \). What is the ratio of the fluid’s speed in the wide section of pipe to its speed in the narrow section of pipe, \( \frac{v_{\text{wide}}}{v_{\text{narrow}}} \)?
A golfer hits her ball in a high arcing shot. Air resistance is negligible. When the ball is at its highest point, which of the following is true?

A ring is pulled on by three forces. If the ring is not moving, how big is the force [katex]F[/katex]?
A car suddenly stops and a passenger lurches forward. This motion is best explained by Newton’s ____ Law.

A piece of metal of weight \(W\) is suspended by two identical strings. Each string passes through a pulley and is attached to a block of mass \(m\) . The system is in equilibrium.What must be true for \(m\) such that the two strings attached to the piece of metal are almost horizontal.
The downward motion of an elevator is controlled by a cable that unwinds from a cylinder of radius \( 0.20 \) \( \text{m} \). What is the angular velocity of the cylinder when the downward speed of the elevator is \( 1.2 \) \( \text{m/s} \)?
Two balls are dropped from the roof of a building. One ball has twice as massive as the other and air resistance is negligible. Just before hitting the ground, the more massive ball has ball ____ the kinetic energy of the less massive ball.
A 2.0 kg ball on the end of a 0.65 m long string is moving in a vertical circle. At the bottom of the circle, its speed is 4.0 m/s. Find the tension in the string.
Two objects are dropped from rest from the same height. Object \( A \) falls through a distance \( d_A \) during a time \( t \), and object \( B \) falls through a distance \( d_B \) during a time \( 2t \). If air resistance is negligible, what is the relationship between \( d_A \) and \( d_B \)?
Suppose an object is accelerated by a force of \( 100 \) \( \text{N} \). Suddenly a second force of \( 100 \) \( \text{N} \) in the opposite direction is exerted on the object, so that the forces cancel. The object
Determine the force needed to push a \( 150 \) \( \text{kg} \) body up a smooth \( 30^\circ \) incline with an acceleration of \( 6 \) \( \text{m/s}^2 \).
There are two cables that lift an elevator, each with a force of \(10{,}000 \, \text{N}\). The \(1{,}000 \, \text{kg}\) elevator is lifted from the first floor and accelerates over \(10 \, \text{m}\) until it reaches its top speed of \(6 \, \text{m/s}\). What is the mass of the people in the elevator?
From the top of a \( 74.0 \) \( \text{m} \) high building, a \( 1.00 \) \( \text{kg} \) ball is dropped in the presence of air resistance. The ball reaches the ground with a speed of \( 31.0 \) \( \text{m/s} \), indicating that drag was significant. How much energy was lost in the form of air resistance/drag during the fall?

An adult exerts a horizontal force on a swing that is suspended by a rope of length \( L \), holding it at an angle \( \theta \) with the vertical. The child in the swing has a weight \( W \) and dimensions that are negligible. In terms of \( W \) and \( \theta \), determine:
At time \( t = 0 \), an object is released from rest at position \( x = +x_{\text{max}} \) and undergoes simple harmonic motion along the \( x \)-axis about the equilibrium position of \( x = 0 \). The period of oscillation of the object is \( T \). Which of the following expressions is equal to the object’s position at time \( t = \dfrac{T}{8} \)?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Quick Start Guide
AP physics 1, AP C, honors and advanced physics students.
Quickly filter questions by units and more.
Here’s guide to using 5 UBQ filters.
GQ = general question, MCQ = multiple choice, FRQ = free response.
Click the check or bookmark button.
Now you’ll be able to see completed or bookmarked questions at a glance!
Answer keys, personalized for you.
Phy will be responsible for grading your FRQs and GQs.
No more copy and pasting. Just solve and snap.
Questions for Mastery
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.